Efeito do ácido valpróico e dos fatores de crescimento na plasticidade dos fibroblastos dérmicos felinos / Effect of Valproic acid and growth factors on plasticity of feline dermal fibroblasts

Diana Maritza Echeverry Berrío, Constanza Javiera Aguilera González, Daniela Michel Rojas Mansilla, Lleretny Rodríguez- Álvarez, Fidel Ovidio Castro

Resumo


As células-tronco mesenquimais (CTM) são utilizadas na terapia celular, isolando-se de diferentes tecidos, incluindo a pele. Os fibroblastos dérmicos têm mostrado características de potência semelhantes às CTMs como expressão de marcadores de superfície e diferenciação para outros tipos de linhagens de origem mesodérmica, principalmente sob a influência de moduladores epigenéticos e fatores de crescimento. A terapia celular em medicina veterinária, especificamente em gatos, representa um desafio devido à invasividade na obtenção de tecidos fonte de CTM, para os quais outras opções menos invasivas estão sendo buscadas para an obtenção dessas células. O objetivo deste estudo foi avaliar o efeito do ácido valpróico - VPA (modulador epigenético) e fatores de crescimento (PRP e h-PDGF-B) na expressão de marcadores de superfície, genes de pluripotência e capacidade de diferenciação mesodérmica de fibroblastos felinos. Fibroblastos de pele foram isolados de gatas e cultivados com VPA e fatores de crescimento por 12 dias. A expressão de Cd90, Cd44, E-Caderina, Snail, Nanog e Oct4 foi avaliada nos dias 5 e 12. O potencial de diferenciação adipogênico, condrogênico e osteogênico dos fibroblastos foi avaliado após 12 dias de tratamento. A expressão de Cd44 aumentou no dia 5 do tratamento com VPA + PRP (p = 0,01). A expressão de Oct4 e Nanog aumentou no dia 5 do tratamento com VPA + h-PDGF-B (p <0,05). Fibroblastos em tratamento com VPA e h-PDGF-B mostraram capacidade de se diferenciar para condrogênese e osteogênese. O protocolo de cultura de células para fibroblastos felinos com VPA e h-PDGF-B confere plasticidade aos fibroblastos felinos ao promover a expressão de Nanog e Oct4, bem como a diferenciação mesodérmica in vitro.


Palavras-chave


Cultura de células, ácido valpórico, felinos, Nanog, condrogênese, diferenciação mesodérmica.

Texto completo:

PDF

Referências


Castro FO, Torres A, Cabezas J, Rodriguez-Alvarez L. Combined use of platelet rich plasma and vitamin C positively affects differentiation in vitro to mesodermal lineage of adult adipose equine mesenchymal stem cells. Res Vet Sci. 2014; 96(1):95–101.

https://doi.org/10.1016/j.rvsc.2013.12.005

Chandrakanthan V, Yeola A, Kwan JC, Oliver RA, Qiao Q, Kang YC, et al. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci. 2016; 113(16), E2306-E2315. https://doi.org/10.1073/pnas.1518244113

Chen T, You Y, Jiang H, Wang Z. Epithelial–mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 2017; 232:3261–3272. https://doi.org/10.1002/jcp.25797

Echeverry DM, Rojas DM, Aguilera CJ, Veraguas DM, Cabezas JG, Rodríguez-Álvarez LL, Castro FO. Differentiation and multipotential characteristics of mesenchymal stem cells derived from adipose tissue of an endangered wild cat (leopardus guigna). Austral J Vet Sci. 2019; 51(1):17-26. http://dx.doi.org/10.4067/S0719-81322019000100104.

Gómez M, Qin Q, Biancardi MN, Galiguis J, Dumas C, MacLean R a., et al. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue. Cell Reprogram. 2015; 17(5):376–92. https://doi.org/10.1089/cell.2015.0040

Gonçalves NN, Ambrósio CE, Piedrahita JA. Stem cells and regenerative medicine in domestic and companion animals: a multispecies perspective. Reprod Domest Anim. 2014; 49(4):2–10. https://doi.org/10.1111/rda.12392

Gonzales KAU, Fuchs E. Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell. Cell Press. 2017; (43):387–401.

https://doi.org/10.1016/j.devcel.2017.10.001

González JC, López C, Carmona JU. Implications of anticoagulants and gender on cell counts and growth factor concentration in platelet-rich plasma and platelet-rich gel supernatants from rabbits. Vet. Comp. Orthop. Traumatol. 2016; 29, 115–124. https://doi.org/10.3415/VCOT-15-01-0011

Halfon S, Abramov N, Grinblat B, Ginis I. Markers Distinguishing Mesenchymal Stem Cells from Fibroblasts Are Downregulated with Passaging. Stem Cell Dev. 2011; 20(1):53–66.

https://doi.org/10.1089/scd.2010.0040

Iacono E, Rossi B, Merlo B. Stem cells from foetal adnexa and fluid in domestic animals: An update on their features and clinical application. Reprod Domest Anim. 2015; 50(3):353–64. https://doi.org/10.1111/rda.12499

Kolios G, Moodley Y. Introduction to Stem Cells and Regenerative Medicine. Respiration. 2013; 85(1):3–10. https://doi.org/10.1159/000345615

Kono S, Kazama T, Kano K, Harada K, Uechi M, Matsumoto T. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells. Vet J. 2014; 199(1):88–96. https://doi.org/10.1016/j.tvjl.2013.10.033

Lai P-L, Lin H, Chen S-F, Yang S-C, Hung K-H, Chang C-F, et al. Efficient Generation of Chemically Induced Mesenchymal Stem Cells from Human Dermal Fibroblasts. Sci Rep. 2017; 7:1–13. https://doi.org/10.1038/srep44534

Miyoshi K, Mori H, Mizobe Y, Akasaka E, Ozawa A, Yoshida M, et al. Valproic Acid Enhances In Vitro Development and Oct-3/4 Expression of Miniature Pig Somatic Cell Nuclear Transfer Embryos. Cell Reprogram. 2010; 12(1):67–74. https://doi.org/10.1089/cell.2009.0032

Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, et al. Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach. Mol Ther. 2012; 20(10):1953–67. https://doi.org/10.1038/mt.2012.117

Mumaw JL, Schmiedt CW, Breidling S, Sigmund A, Norton NA, Thoreson M, et al. Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils. Res Vet Sci. 2015; 103:60–9. https://doi.org/10.1016/j.rvsc.2015.09.010

Pattappa G, Heywood K, de Bruijn D, Joost A, Lee D. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol. 2010; 226(10):2562–70. https://doi.org/10.1002/jcp.22605

Racila D, Winter M, Said M, Tomanek-Chalkley A, Wiechert S, Eckert RL, et al. Transient expression of OCT4 is sufficient to allow human keratinocytes to change their differentiation pathway. Gene Ther. 2011; 18(3):294–303. http://dx.doi.org/10.1038/gt.2010.148

Rodríguez-alvarez L, Manriquez J, Velasquez A, Castro FO. Constitutive expression of the embryonic stem cell marker OCT4 in bovine somatic donor cells influences blastocysts rate and quality after nucleus transfer. 2013; 49(9):657-667. https://doi.org/10.1007/s11626-013-9650-0

Tobita M, Tajima S, Mizuno H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness. Stem Cell Res Ther. 2015; 6(1):215. https://doi.org/10.1186/s13287-015-0217-8

Toma JG, Akhavan M, Fernandes KJL, Barnabé-Heider F, Sadikot A, Kaplan DR, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001; 3(9):778–84. https://doi.org/10.1038/ncb0901-778

Verma R, Liu J, Holland MK, Temple-Smith P, Williamson M, Verma PJ. Nanog is an essential factor for induction of pluripotency in somatic cells from endangered felids. Biores Open Access. 2013; 2(1):72–6. https://doi.org/10.1089/biores.2012.0297

Yu X, Jin G, Yin X, Cho S, Jeon J, Lee S, et al. Isolation and characterization of embryonic stem-like cells derived from in vivo-produced cat blastocysts. Mol Reprod Dev. 2008; 75(9):1426–32. https://doi.org/10.1002/mrd.20867




DOI: https://doi.org/10.34188/bjaerv4n3-010

Apontamentos

  • Não há apontamentos.