Salinity effects in metabolic rate and behavior in lambari Astyanax bimaculatus / Efeitos da salinidade no metabolismo de rotina e comportamento do lambari Astyanax bimaculatus

Autores

  • Júlia Schulz Carneiro
  • Edison Barbieri
  • Karina Fernandes Oliveira Rezende
  • Leonardo Castilho de Barros
  • Marcelo Barbosa Henriques

DOI:

https://doi.org/10.34188/bjaerv3n3-127

Palavras-chave:

oxygen specific consumption, specific ammonia excretion, sport fishing, Characidae, live bait.

Resumo

Lambari (Characidae) is a small fish, common in Brazil and it has potential for aquaculture. It is used aslive-bait in sport fishing in inland waters. The most commonly used live-bait in marine and estuarine sport fishing is the white shrimp (Litopenaeus schmitti), but the current demand caused by overfishing has depleted natural stocking. This study aimed to evaluate the lambari fish Astyanax bimaculatus resistance in different salinities so it might be considered analternative live-bait in oligahaline waters. It was determined Lethal Concentration (LC50), routine metabolism and swimming behavior. To determine LC 50 (96h), 120 fish were divided in eight treatments: 0 (control), 5, 10, 15, 20, 25, 30 and 35 g L-1 of salinity. Afterwards, individuals were exposed in salinities of 0, 5 and 10 g L-1 (n=10) and analyzed specific oxygen consumption and ammonia excretion in 1 and 24 hours of exposure. Swimming behavior was tested in 90 fish, divided into three groups in the same salinities (0, 5 and 10 g L-1), after 2 and 45 minutes of exposure. LC 50 result was 12.73 g L-1. Ammonia excretion (p= 0.8) and oxygen consumption (p= 0.09) did not show difference in 24 hours to all tested salinities. Ammonia excretion presented a difference in 1 hour treatment in salinity of 10 g L-1 comparing to control (p= 0.0003). It occurred with oxygen consumption also showing a difference in 1 hour of exposure. When comparing control with the other salinities, there was a statistical difference (p = 0.02 to 5 g L-1 and 0.006 to 10g L-1). Lambari fish swimming acceleration decreased, showing a statistical difference in 45 minutes of exposure (p <0.05) comparing to control. A. bimaculatus showed resistance to salty waters (10 g L-1) and it maybe considered as alternative live-bait for estuarine sport fishing.

Referências

Altinok I., & Grizzle, J. M. (2003). Effects of Low Salinities on Oxygen Consuptiom of Selected Euryhaline and Stenohaline Freshwater Fish. Journal of the World of Aquaculture Society, 34(1), 113-117.

American Public Health Association (1989). Toxicity test procedures using mollusks. In: Standard Methods for the Examination of Water and Wastewater, 17a. ed., Port City

Press, 73-880.

Araújo, F.G., Nascimento, A.A., Gomes, I.D., Sales, A., & Oliveira, B.A.C. (2019). Gonadal development and reproductive period of the characin Astyanax aff. Bimaculatus (Characiformes: Characidae) in a tropical reservoir in southern Brazil. Zoologia, 36(e30610), 1-14.

Armstrong, T., Khursigara, A.J., Killen, S.S., Fearnley, H., Parsons, K.J., & Esbaugh, A.J. Oil exposure alters social group cohesion in fish. Scientific Reports, 2019(9),13520.

Barbieri, E., Doi, S.A.(2012). Acute toxicity of ammonia on juvenile Cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity. Aquaculture International, 20(2), 373-382.

Barbieri, E., Ferrarini, A.M.T., Rezende, K.F.O., Martinez, D.S.T., &Alves, O.L.(2019a).Effects of multiwalled carbon nanotubes and carbofuran on metabolism in Astyanax ribeirae, a native species. Fisheries Physiology Biochemistry,45(1), 417-426.

Barbieri, E., Lenz, R.M., Nascimento, A.A., Almeida, G.L. Roselli, L.Y., & Henriques, M.B. (2019b). Lethal and sublethal effects of ammonia in Deuterodoniguape (Eigenmann 1907), potential species for Brazilian aquaculture. Boletim Instituto de Pesca,45(1): e400.

Barbieri, E., Rezende, K.F.O., Henriques, M.B., &Carneiro, J.S. (2019c). Metabolic and histological alterations after exposing Deuterodoniguapeto different salinities. Boletim Instituto de Pesca,45(2): e.410.

Barrella, W., Cachola, N., Ramires, M., & Rotundo, M.M. (2016). Aspectos biológicos e socioeconômicos da pesca esportiva no “deck do pescador” de Santos (SP, Brasil). Brazilian Journal of Aquatic Science Technology,20(1): 61-68.

Bosisio, F., Rezende, K.F.O., &Barbieri, E. (2017). Alterations in the hematological parameters of Juvenile Nile Tilapia (Oreochromis niloticus) submitted to different salinities. Pan- American Journal of Aquatic Sciences, 12(2), 146–154.

Casane, D., & Rétaux, S. (2016). Chapter Five - Evolutionary Genetics of the Cavefish Astyanax mexicanus. Advances in Genetics, 95, 117 – 159.

Castilho-Barros, L., Barreto, O.J.S., &Henriques, M.B. (2014a). The economic viability for the production of live baits of white shrimp (Litopenaeus schmitti) in recirculation culture system. Aquaculture International,22: 1925–1935.

Castilho-Barros, L., Alves, P.M.F., Silva, N.J.R., & Henriques, M.B. (2014b). Cadeia produtiva do camarão branco utilizado como isca viva na pesca amadora da Baixada Santista, estado de São Paulo. Economia da Informação,44(6): 23-36.

Damato, M., &Barbieri, E. (2012) Estudo da Toxicidade aguda e alterações metabólicas provocadas pela exposição do Cádmio sobre o peixe Hyphessobrycon callistus utilizado como indicador de saúde ambiental. Mundo Saúde,36(4), 574-581.

Diniz, N.M., & Honorato, C.A. Algumas alternativas para diminuir os efeitos o estresse em peixes de cultivo – revisão. Arquivos de Ciências Veterinária e Zoologia, 15(2): 149-154.

Faimali, M., Gambardella, C., Costa, E., Piazza, V., Morgana, S... Garaventa, F. (2016). Old model organisms and new behavioral end-points: Swimming alteration as an ecotoxicological response. Marine Environment Research,128, 34-45.

Fonseca, T., Costa-Pierce, B.A., & Valenti, W.C. (2017). Lambari Aquaculture as a Means for the Sustainable Development of Rural Communities in Brazil. Reviews in Fisheries Science & Aquaculture, 25(4), 1-15.

Gutierre, S.M.M., Vitule, J.R.S., Freire, C.A., & Prodocimo, V. (2014). Physiological tools to predict invasiveness and spread via estuarine bridges: tolerance of Brazilian native and worldwide introduced freshwater fishes to increased salinity. New Zealand Journal of Marine and Freshwater Research, 65, 425-436.

Guo, W., Yan, X., Ma, G., Xiao, L., & Zhang, G. (2013). A study on early tolerance of Mactra chinensis philippi to salinity. Acta Ecologica Sinica, 33, 206-210.

Hassan, M., Mi, Z., Wahab, W., Muhammad, S.D., Idris, N., & Jasmani, S. (2013). Histopathological and Behavioral Changes in Oreochromis sp. after Exposure to Different Salinities. Journal of Fisheries and Livestock Production, 1(2), 2-4.

Hamilton, M.A., Russo, R.C., &Thurston, V. (1977). Trimed Sperman-Karber method for estimating medial lethal concentrations in toxicology bioassays. Environmental Sciences of Technology, 11(7), 714-719.

Henke, J.L., & Chaves, P.T.C. (2017). Ictiofauna e pesca amadora no litoral sul do paraná: estudo de caso sobre capturas e potencial impacto. Brazilian Journal of Aquatic Science and Technology, 21(1), 37-43.

Henriques, M.B., Fagundes, L., Petesse, M.L., Silva, N.J.R., Rezendem K.F.O., & Barbieri, E. (2018). Lambari fish Deuterodon iguape as an alternative to live bait for estuarine recreational fishing. Fisheries Management and Ecology, 25(5), 400-407.

Imanpoor, M.R., Najafi, E., & Kabir, M. (2012). Effects of different salinity and temperatures on the growth, survival, hematocrit and blood biochemistry of Gold?sh (Carassius auratus). Aquaculture Research, 43(3), 332-338.

Júnior, H.A., Vahrlich, R., Hoinkes, R., & Tebaldi, C. (2010). Aclimatação do híbrido da tilápia vermelha Oreochromis niloticus sp. e utilização em ambientes marinhos como isca viva para a pesca de tunídeos. Revista Electrónica deVeterinaria,11(3), 3-16.

Lucena, C.A.S., & Soares, H.G. (2016). Review of species of the Astyanax bimaculatus “caudal peduncle spot” subgroup sensu Garutti & Langeani (Characiformes, Characidae) from the rio La Plata and rio São Francisco drainages and coastal systems of southern Brazil and Uruguay. Zootaxa, 4072(1), 101-125.

Mattioli, C.C., Takata, R., Leme, F.O.P., Costa, D.C., Filho, R.M... Luz, R.K. (2017). The effects of acute and chronic exposure to water salinity on juveniles of the carnivorous freshwater catfish Lophiosilurusa lexandri. Aquaculture, 485(1), 255-266.

Moreira, D.M.V., Ferreira, P.M.F., Zuanon, J.A.S., & Salaro, A.L. (2011). Tolerância aguda e subcrônica de juvenis de acará-bandeira à salinidade da água. Revista Brasileira de Engenharia de Pesca, 6(1), 38-47.

Plaut, I, (2000), Resting Metabolic Rate, Critical Swimming Speed, and Routine Activity of the Euryhaline Cyprinodontid, Aphaniusdispar, Acclimated to a Wide Range of Salinities. Physiological and Biochemical Zoology,73(5), 590-596.

Prado, P.S., Souza, C.C., Bazzoli, N., & Rizzo, E. Reproductive disruption in lambari Astyanax fasciatus from a Southeastern Brazilian reservoir. Ecotoxicology and Environmental Safety, 74(7),1879 – 1887.

Sabbag, O.M., Takahashi, L.S., Silveira, A.N., &Aranha, A.S. (2011). Custos e viabilidade econômica da produção de lambari-do-rabo amarelo em Monte Castelo/SP: um estudo de caso. Boletim do Instituto de Pesca,37(3), 301-315.

Sampaio, F.D.F., & Freire, C.A. (2016). An overview of stress physiology of fish transport: changes in water quality as a function of transport duration. Fishand Fisheries, 17(4), 1055-1072.

Silva, N.J.R., Lopes, M.C., Fernandes, J.B.K., & Henriques, M.B. (2011). Caracterização dos sistemas de criação e da cadeia produtiva do lambari no Estado de São Paulo, Brasil. Informações Econômicas, 41(9), 17-28.

Souza-Bastos, L.R., Bastos, L.P., Carneiro, P.C.F., & Freire, C.A. (2016). A cute salt exposure of the fresh water Characiformes: Pacu (Piaractus mesopotamicus, Holmberg 1887), Tambaqui (Colossoma macropomum, Cuvier 1818), and theirhy brid “Tambacu”. Aquaculture, 465, 352-358.

Tincani, F.H., Santos, G.S., Azevedo, A.C.B., Marques, A.E.M.L., Pereira, L.S., Castellano, G.C. ... Cestaria, M.M. (2019). Climbing the taxonomic ladder: Could a genus be used as bioindicator? The ecotoxicological relationship between biomarkers of Astyanax altiparanae, Astyanax bifasciatus and Astyanax ribeirae. Ecological Indicators, 106: 105474.https://doi.org/10.1016/j.ecolind.2019.105474

Uliano, E., Cataldi, M., Carella, F., Migliaccio, O. Agnisola, C. (2010). Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio). Comparative Biochemistry and Physiology, Part A, 157(3), 283-290.

Valladão, G.M.R., Gallani, S.U., & Pilarski, F. (2016). South American fish for continental aquaculture. Reviews in Aquaculture, 0, 1-19.

Wright, P.A., &Wood, C.M. (2012). Seven things fish know about ammonia and we don’t. Respiratory Physiology &Neurobiology, 184, 231-240.

Zeineddine, G.C., Barella, W., Rotundo, M.M., Clauzet, M., &Ramires, M. (2015). Etnoecologia de pesca de camarões usados como isca viva na Barra do Una, Peruíbe (SP/Brasil). Revista Brasileira de Zootecnia, 16, 67-83.

Zhao, F., Zhuang, P., Zhang, T., Wang, Y., Hou, J…&Zhang, L. (2015). Isosmotic points and their ecological significance for juvenile Chinese sturgeon Acipenser sinensis. Journal of Fish Biology, 86(4), 1416-1420.

Downloads

Publicado

2020-08-23

Como Citar

Carneiro, J. S., Barbieri, E., Rezende, K. F. O., Barros, L. C. de, & Henriques, M. B. (2020). Salinity effects in metabolic rate and behavior in lambari Astyanax bimaculatus / Efeitos da salinidade no metabolismo de rotina e comportamento do lambari Astyanax bimaculatus. Brazilian Journal of Animal and Environmental Research, 3(3), 2165–2179. https://doi.org/10.34188/bjaerv3n3-127

Edição

Seção

Artigos originais