Esquema de alivio de carga adaptativo en sistemas de potencia de alto componente no inercial basado en representaciones dinámicas / Esquema de alívio de carga adaptativo em sistemas de potência de componentes não inerciais elevados baseado em representações dinâmicas

Authors

  • Jonathan Maldonado- Carvajal Brazilian Journals Publicações de Periódicos, São José dos Pinhais, Paraná
  • Carlos Barrera- Singaña

DOI:

https://doi.org/10.34115/basrv6n2-018

Keywords:

deslastre de carga, generación no inercial, baja frecuencia, estabilidad de frecuencia.

Abstract

En este documento se pretende determinar un esquema de alivio de carga (EAC) mismo que se adapte a un despacho de energía en donde exista el ingreso una gran cantidad de generación renovable la cual no aporte con energía inercial al sistema eléctrico de potencia (SEP) luego de presentarse una gran perturbación en el SEP. Es muy importante determinar los parámetros adecuados de un EAC ya que estos representan la cantidad de carga que se va a deslastrar al presentarse un gran desbalance entre la generación y la carga. Para ello se plantea una estructura en la cual se verifica la cantidad de generación no inercial existe respecto a la generación convencional y a través de la herramienta computacional DIgSILENT PowerFactory se pone a prueba el modelo propuesto para verificar la actuación del EAC y la cantidad de carga que se deslastra dentro de un evento del SEP. El modelo se pone a prueba en el sistema de prueba IEEE 39-barras. Los resultados encontrados corresponden a los parámetros del EAC para diferentes despachos de generación no inercial dentro de una SEP.

References

H. M. Kim, T. Kinoshita, Y. Lim, and T. H. Kim, “Bankruptcy problem approach to load-shedding in agent-based microgrid operation,” Commun. Comput. Inf. Sci., vol. 78 CCIS, pp. 621–628, 2010.

Y. Jiang, X. Chen, S. Peng, X. Du, D. Xu, and J. Tang, “Study on Emergency Load Shedding of Hybrid AC / DC Receiving-End Power Grid with Stochastic ,” Energies, no. October 2019, p. 20, 2019.

N. M. Sapari, H. Mokhlis, J. A. Laghari, A. H. A. Bakar, and M. R. M. Dahalan, “Application of load shedding schemes for distribution network connected with distributed generation: A review,” Renew. Sustain. Energy Rev., vol. 82, no. January 2016, pp. 858–867, 2018.

H. Mohamad, A. I. M. Isa, Z. M. Yasin, N. A. Salim, and N. N. A. M. Rahim, “Optimal load shedding technique for an islanding distribution system by using Particle Swarm Optimization,” 3rd Int. Conf. Power Gener. Syst. Renew. Energy Technol. PGSRET 2017, vol. 2018-Janua, pp. 154–158, 2018.

M. Dreidy, H. Mokhlis, and S. Mekhilef, “Application of meta-heuristic techniques for optimal load shedding in islanded distribution network with high penetration of solar PV generation,” Energies, vol. 10, no. 2, 2017.

I. S. Budi, A. Nurdiansyah, and A. Lomi, “Impact of load shedding on frequency and voltage system,” 2017 Int. Semin. Intell. Technol. Its Appl. Strength. Link Between Univ. Res. Ind. to Support ASEAN Energy Sect. ISITIA 2017 - Proceeding, vol. 2017-Janua, pp. 110–115, 2017.

J. Morren, J. Pierik, and S. W. H. de Haan, “Inertial response of variable speed wind turbines,” Electr. Power Syst. Res., vol. 76, no. 11, pp. 980–987, 2006.

N. Perumal and C. C. Ying, “A proposed strategy of implementation for load shedding and load recovery with dynamic simulations,” Natl. Power Energy Conf. PECon 2004 - Proc., pp. 185–189, 2004.

B. Fox, J. G. Thompson, and C. E. Tindall, “Adaptive control of load shedding relays under generation loss conditions,” IET Conf. Publ., pp. 259–263, 1989.

V. Chin, Z. Y. Dong, T. K. Saha, J. Ford, and J. Z. J. Zhang, “Adaptive and optimal under frequency load shedding,” 2008 Australas. Univ. Power Eng. Conf., no. June 2015, pp. 1–6, 2008.

Nahid-Al-Masood, N. Modi, and R. Yan, “Low inertia power systems: Frequency response challenges and a possible solution,” pp. 1–6, 2016.

K. S. Ratnam, K. Palanisamy, and G. Yang, “Future low-inertia power systems: Requirements, issues, and solutions - A review,” Renew. Sustain. Energy Rev., vol. 124, no. February, p. 109773, 2020.

A. Atputharajah and T. K. Saha, “Power system blackouts - literature review,” ICIIS 2009 - 4th Int. Conf. Ind. Inf. Syst. 2009, Conf. Proc., no. December, pp. 460–465, 2009.

A. Ulbig, T. S. Borsche, and G. Andersson, Impact of low rotational inertia on power system stability and operation, vol. 19, no. 3. IFAC, 2014.

Binti Ida Umaya, “Dymanic Under Frequency Load Shedding in Power Systems,” Univ. Nusant. PGRI Kediri, vol. 01, pp. 1–7, 2017.

B. Delfino, S. Massucco, A. Morini, P. Scalera, and F. Silvestro, “Implementation and comparison of different under frequency load-shedding schemes,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., vol. 1, no. SUMMER, pp. 307–312, 2001.

V. V. Terzija, “Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1260–1266, 2006.

N. N. A. Bakar, M. Y. Hassan, M. F. Sulaima, M. N. im Mohd Nasir, and A. Khamis, “Microgrid and load shedding scheme during islanded mode: A review,” Renew. Sustain. Energy Rev., vol. 71, no. December 2016, pp. 161–169, 2017.

M. Marzband, M. M. Moghaddam, M. F. Akorede, and G. Khomeyrani, “Adaptive load shedding scheme for frequency stability enhancement in microgrids,” Electr. Power Syst. Res., vol. 140, pp. 78–86, 2016.

S. Li, F. Tang, Y. Shao, and Q. Liao, “Adaptive under-frequency load shedding scheme in system integrated with highwind power penetration: Impacts and improvements,” Energies, vol. 10, no. 9, 2017.

A. Ketabi and M. Hajiakbari Fini, “Adaptive underfrequency load shedding using particle swarm optimization algorithm,” J. Appl. Res. Technol., vol. 15, no. 1, pp. 54–60, 2017.

U. Rudez and R. Mihalic, “Monitoring the first frequency derivative to improve adaptive underfrequency load-shedding schemes,” IEEE Trans. Power Syst., vol. 26, no. 2, pp. 839–846, 2011.

H. E. Lokay and V. Burtnyk, “Application of Underfrequency Relays for Automatic Load Shedding,” Power, no. 3, pp. 776–783, 1968.

G. A. Chown and M. Coker. , J.G. Wright , R. V. Heerden, “System inertia and Rate of Change of Frequency (RoCoF) with increasing non-synchronous renewable energy penetration,” CIGRE Sci. -Engineering, vol. 11, no. June, pp. 1–16, 2018.

H. Jiang, G. Yan, H. Ji, L. Liu, and D. Shan, “An improved under frequency load shedding scheme based on rate of change of frequency,” Proc. - Int. Conf. Electr. Control Eng. ICECE 2010, no. i, pp. 3292–3295, 2010.

Y. R. Omar, I. Z. Abidin, S. Yusof, H. Hashim, and H. A. Abdul Rashid, “Under Frequency Load Shedding (UFLS): Principles and implementation,” PECon2010 - 2010 IEEE Int. Conf. Power Energy, no. 1, pp. 414–419, 2010.

M. Dreidy, H. Mokhlis, and S. Mekhilef, “Inertia response and frequency control techniques for renewable energy sources: A review,” Renew. Sustain. Energy Rev., vol. 69, no. July 2016, pp. 144–155, 2017.

J. B. Anderson “Power System Protection,” IEEE Power Engineering Society., IEEE Press Power, pp. 807-911, 2013.

P. M. Anderson and M. Mirheydar, “An adaptive method for setting underfrequency load shedding relays,” IEEE Trans. Power Syst., vol. 7, no. 2, pp. 647–655, 1992.

M. Cupelli, C. Doig Cardet, and A. Monti, “Voltage stability indices comparison on the IEEE-39 bus system using RTDS,” 2012 IEEE Int. Conf. Power Syst. Technol. POWERCON 2012, pp. 1–6, 2012.

Published

2022-04-22

How to Cite

Carvajal, J. M.-., & Singaña, C. B.-. (2022). Esquema de alivio de carga adaptativo en sistemas de potencia de alto componente no inercial basado en representaciones dinámicas / Esquema de alívio de carga adaptativo em sistemas de potência de componentes não inerciais elevados baseado em representações dinâmicas. Brazilian Applied Science Review, 6(2), 657–675. https://doi.org/10.34115/basrv6n2-018

Issue

Section

Original articles