Compensatory response of cotton plants to simulated carpophagic pest injury / Resposta compensatória de plantas de algodoeiro a injúria simulada de pragas carpofágicas

Authors

  • José Ednilson Miranda
  • Bruna Mendes Diniz Tripode
  • Ismael Ribeiro da Rocha Silva

DOI:

https://doi.org/10.34115/basrv4n5-016

Keywords:

Gossypium, shedding, abscission, compensation, insect.

Abstract

Due upland cotton crop has a relatively long cycle on Brazilian Savannah areas, varying from 180 to 220 days, abscission and replacement of floral structures is frequent although variable along the phenological phases. The reproductive phase occurs from 45 days after plant emergence until close to the harvest. The objective of this study was to measure the ability of cotton plants to compensate losses caused by carpophagic insects by producing new floral structures. Four cotton cultivars (FM913GLT, FM980GLT, FM966LL and FM975WS) were sowed in an irrigated area, whose soil is characterized as dystrophic latosol. The treatments were arranged in a factorial scheme, with the cultivar being the main factor and the intensity of the injury caused manually by the removal of floral structures as the secondary factor. Simulated damages consisted of five levels of removal of floral buds, flowers and bolls at 75 days after emergence (DAE). We recorded the number of floral structures present in the plants at 140 DAE and at the harvest. The damage boundary (Db) varied among the cultivars, demonstrating a differentiated response of tolerance to injury. FM980GLT and FM975WS were able to compensate and overcompensate the losses; the same does not happen to FM913GLT and FM966LL. We observed tolerance and linearity phases in all the cultivars but FM966LL. FM980GLT showed highest response capability after be injured. The cotton plants compensated for the loss of structures up to a certain limit of injury, which varies with the cultivar. Overcompensation and compensation occurred through the replacement of new structures while the compensatory response into increase in the weight of bolls did not happen.

References

AGUSTÍ, J.; GIMENO, J.; MERELO, P.; SERRANO. R.; CERCÓS, M.; CONESA, A.; TALÓN, M.; TADEO, F.R. Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: involvement of CitbHLH1. Journal of Experimental Botany, v.63, p.6079–6091, 2012.

ALBA, J.M.; SCHIMMEL, B.C.J.; GLAS, J.J.; ATAIDE, L.M.S.; PAPPAS, M.L.; VILLARROEL, C.A.; SCHUURINK, R.C,; SABELIS, M.W.; KANT, M.R. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytologist, v.205, p.828-840, 2015.

ARMSTRONG, J.S.; COLEMAN, R.J.; DUGGAN, B.L. Actual and simulated injury of Creontiades signatus (Heteroptera: Miridae) feeding on cotton bolls. Journal of Entomological Science, v.45, n.2, p.170-177, 2010.

ASCOUGH, G.D.; NOGEMANE, N.; MTSHALI, N.P.; van STADEN, J.; BOMMAN, C.H. Flower abscission: environmental control, internal regulation and physiological responses of plants. South African Journal of Botany, v.71, n.384, p.287-301, 2005.

BELOT, J.L.; BARROS, E.; MIRANDA, J.E. Riscos e oportunidades: o bicudo-do-algodoeiro. In: AMPA/APROSOJA/EMBRAPA. (Org.). Desafios do Cerrado: Como sustentar a expansão da produção com produtividade e competitividade. Cuiabá: Associação Mato-grossense dos Produtores de Algodão, v.1, p.77-118, 2016.

BOTTON, A.; ECCHER, G.; FORCATO, C.; FERRARINI, A.; BEGHELDO, M.; ZERMIANI, M.; MOSCATELLO, S.; BATTISTELLI, A.; VELASCO, R.; RUPERTI, B.; RAMINA, A. Signaling pathways mediating the induction of apple fuitlet abscission. Plant Physiology, v.155, p.185-208, 2011.

BROOK, K.D.; HEARN, A.B.; KELLY, C.F. Response of cotton, Gossypium hirsutum L., to damage by insect pests in Australia: manual simulation of damage. Entomological Society of America, v.85, n.4, p.1368-77, 1992.

CARMONA, D.; FORNONI, J. Herbivores can select for mixed defensive strategies in plants. New Phytologist. v.197, p.575-585, 2013.

DICKE, M.; BALDWIN, I.T. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Science, v.15, p.167-175, 2010.

ECHER, F.R.; OOSTERHUIS, D.M.; LOKA, D.A.; ROSOLEM, C.A. High night temperatures during the floral bud stage increase the abscission of reproductive structures in cotton. Journal of Agronomy, v.200, n.3, p.191-198, 2014.

FÜRSTENBERG-HÄGG, J.; ZAGROBELNY, M.; BAK, SOREN. Plant defense against insect herbivores. International Journal of Molecular Science, v.14, n.5, p.10242-10297, 2013.

GORE, J.; LEONARD, B.R.; CHURCH, G.E.; RUSSEL, J.S.; HALL, T.S. Cotton boll abscission and yield losses associated with first-instar bollworm (Lepidoptera: Noctuidae) injury to nontransgenic and transgenic Bt cotton. Journal of Economic Entomology, v.93, n.3, p.690-696, 2000.

HASSAN, S.T.S.; WILSON, L.T. Simulated larval feeding damage patterns of Heliothis armigera (Hübner) and H. punctigera (Wallengren) (Lepidoptera: Noctuidae) on cotton in Australia. Internation Journal of Pest Management, v.39, n.2, p.230-245, 1993.

KLETTER, E.; WALLACH, D. Effects of fruiting form removal on cotton reproductive development. Field Crops Research, v.5, p.69-84, 1982.

KOZLOV, M.V.; ZVEREVA, E.L. Variations in the effects of local foliar damage on live span of individual leaves of downy birch (Betula pubescens). Botany, v.92, n.7, p.477-484, 2014.

LUCAS, D.D.P. Injúria foliar em diferentes estágios fenológicos de plantas de girassol e seu efeito na produção. Dissertação (Mestrado em Agronomia). Universidade Federal de Santa Maria. Santa Maria, RS, 2011. 75p.

LUCAS-BARBOSA, D.; van LOON, J.J.A.; DICKE, M. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry, v.72, n.13, p.1647-1654, 2011.

OLEJNICZAK, P. Overcompensation in response to simulated herbivory in the perennial herb Sedum maximum. Plant ecology, v.212, p.1927-1935, 2011.

OLIVEIRA, R.S.; OLIVEIRA-NETO, O.B.; MOURA, H.F.N.; MACEDO, L.L.P.; ARRAES, F.B.M.; LUCENA, W.A.; LOURENÇO-TESSUTTI, I.T.; BARBOSA, A.A.D.; SILVA, M.C.M.; SÁ, M.F.G. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda) and cotton boll weevil Anthonomus grandis). Front plant Science, v.7, p.1-11, 2016.

PATHARKAR, O.R.; WALKER, J.C. Core mechanisms regulating developmentally timed and environmentally triggered abscission. Plant Physiology, v.172, n.1, p.510-520, 2016.

PEDIGO, L.P.; HUTCHINS, S.H.; HIGLEY, L.G. Economic injury levels in theory and practice. Annual Review of Entomology, v.31, p.341-368, 1986.

POVEDA, K.; DÍAZ, M.F.; RAMIREZ, A. Can overcompensation increase crop production? Ecology, vol.99, p.270-280, 2018.

POVEDA, K.; JIMÉNEZ, M.I.S.; KESSLER, A. The enemy as ally: herbivore-induced increase in crop yield. Ecological Applications, v.20, n.7, p.1787-1793, 2010.

REDDY, P.P. Impact of climate change on insect pests, pathogens and nematodes. Pest Management in Horticultural Ecosystems, v.19, n.2, p.225-233, 2013.

SAWICKI, M.; BARKA, E.A.; CLÉMENT, C.; VAILLANT-GAVEAU, N.; JACQUARD, C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. Journal of Experimental Botany, v.66, n.7, p.1707-1719, 2015.

SCHOWALTER, T.D. Insect ecology: an ecosystem approach. Academic Press. San Diego. 2016. 633p.

SILLA, F.; FLEURY, M.; MEDIAVILLA, S.; ESCUDERO, A. Effects of simulated herbivory on photosynthesis and N resorption efficiency in Quercus pyrenaica Willd. samplings. Trees Structures Functions, v.22, n.6, p.785-793, 2008.

STIEHA, C.; ABBOTT, K.C.; POVEDA, K. The effects of plant compensatory regrowth and induced resistance on herbivore population dynamics. The American naturalist, v.187, n.2, p.167-181, 2016.

STRAUSS, S.; AGRAWAL, A.A. The ecology and evolution of plant tolerance to herbivory. Tree, v.14, p.179-185, 1999.

TIFFIN, P. Mechanisms of tolerance to herbivore damage: What do we know? Evolutionary Ecology, v.14, p.523-536, 2000.

TRUMBLE, J.T.; KOLODNY,-HIRSCH, D.M.; TING, I.P. Plant compensation for arthropod herbivory. Annual Review of Entomology, v.38, p.93-119, 1993.

ZHANG, D.; LIU, C.; CHENG, H.; KAN, G.; CUI, S.; MENG, Q.; GAI, J.; YU, D. Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission. Plant Breeding, v.129, n.3, p.243-249, 2010.

Published

2020-09-29

How to Cite

Miranda, J. E., Tripode, B. M. D., & Silva, I. R. da R. (2020). Compensatory response of cotton plants to simulated carpophagic pest injury / Resposta compensatória de plantas de algodoeiro a injúria simulada de pragas carpofágicas. Brazilian Applied Science Review, 4(5), 2954–2965. https://doi.org/10.34115/basrv4n5-016

Issue

Section

Original articles