Fatores neurotróficos como possível estratégia terapêutica na regeneração do tecido nervoso: Revisão sistemática / Neurotrophic factors as a possible therapeutic strategy in nervous tissue regeneration: A systematic review

Marco Taneda, Aldo José Fontes-Pereira

Resumo


Introdução: Lesões no sistema nervoso criam microambientes não favoráveis à regeneração e acarretam severas repercussões funcionais. Neste sentido, muitos fatores neurotróficos têm sido estudados e sugeridos como possível estratégia terapêutica para a regeneração e reparo do tecido nervoso. Objetivo: Estudar os fatores neurotróficos e seu possível potencial para a regeneração do tecido nervoso, em especial do sistema nervoso de animais adultos. Método: Trata-se de uma revisão sistemática da literatura que buscou artigos das bases de dados do Medline e Web of Science, publicados no período de 01 de janeiro de 1980 até 31 de março de 2020. Resultados: Foram selecionados 22 estudos experimentais que comprovam que os fatores neurotróficos: 1) melhoram a plasticidade e a neurogênese; 2) revertem completamente os efeitos negativos da axotomia crônica/ativam expressão de moléculas associadas à regeneração e recuperação funcional tardia após lesão; 3) aumentam o número de neurônios sensoriais regenerados e melhoram a recuperação funcional sensorial; 4) promovem sobrevivência sustentada e aumento do motoneurônio/reinervação aprimorada da musculatura/recuperação da função voluntária / melhoram recuperação funcional locomotora; 5) aumentam a espessura da fibra nervosa, diâmetro do axônio e bainha de mielina / favorece a remielinização. Conclusão: Os fatores neurotróficos são biomoléculas que possuem efeitos sobre os neurônios, tais como a sobrevivência destes e estimulação e direcionamento do crescimento das fibras nervosas. Alguns desses fatores são produtos dos músculos e de outras estruturas que são inervadas por neurônios, porém outras são produzidas pela neuroglia. Os fatores neurotróficos têm sido ressaltados como uma possível estratégia terapêutica para a regeneração do tecido nervoso.


Palavras-chave


Fatores neurotróficos, Traumatismos da medula espinhal, Células de Schwann, Nervos periféricos, Regeneração nervosa.

Texto completo:

PDF

Referências


ABE, K., NAMIKAWA, K., HONMA, M., IWATA, T., MATSUOKA, I., WATANABE, K., KIYAMA, H. (2001) Inhibition of Ras extracellular-signal-regulated kinase (ERK) mediated signalling promotes ciliary neurotrophic factor (CNTF) expression in Schwann cells. Journal of Neurochemistry, 77: 700-703.

ALLODI, I.; UDINA, E.; NAVARRO, X. Specificity of peripheral nerve regeneration: Interactions at the axon level. Prog. Neurobiol. 2012, 98, 16–37.

ALOE, L.; ROCCO, M.L.; BIANCHI, P.; MANNI, L. Nerve growth factor: From the early discoveries to the potential clinical use. J. Transl Med. 2012, 10, 239, doi:10.1186/1479-5876-10-239.

AN, D.; WEI, X.W.; ZHANG, H.N.; LIU, D.; MA, W.; YUAN, Z.W. Spatiotemporal expression of leukemia inhibitory factor receptor protein during neural tube development in embryos with neural tube defects. Neural Regen Res. 2020 (15): 705-711.

ANDERSON, M.A.; O´SHEA, T.M.; BURDA, J.E.; AO, Y.; BARLATEY, S.L.; BERNSTEIN, A.M.; ET AL. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 2018 (561): 396-400.

ANGELI, C.A.; BOAKYE, M.; MORTON, R.A.; VOGT, J.; BENTON, K.; CHEN, Y. ET AL. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 2018. 379, 1244-1250.

ARCE, V., POLLOCK, R.A., PHILIPPE, J.M., PENNICA, D., HENDERSON, C.E. AND DELAPEYRIERE, O. (1998) Synergistic effects os Schwann-and muscle-derived factors on motoneuron survival involve GDNF and cardiotrophin-1 (CT-1). J Neurosci, 18: 1440-1448.

BAE, S.H.; YOO, M.R.; KIM, Y.Y.; HONG, I.K.; KIM, M.H.; LEE, S.H.; KIM, D.Y. Brain-derived neurotrophic factor mediates macrophage migration inhibitory factor to protect neurons against oxygen-glucose deprivation. Neural Regen Res. 2020 (8): 1483-1489.

BAYDYUK, M.; XU, B. BDNF signaling and survival of striatal neurons. Front. Cell. Neurosci. 2014, 8 , doi:10.3389/fncel.2014.00254.

BERKOWITZ M, O'LEARY P, KRUSE DL, HARVEY C. Spinal Cord Injury: An Analaysis of Medical and Social Costs. 1998. p. 188.

BHATTARAI, P.; COSACAK, M.I.; MASHKARYAN, V.; DEMIR, S.; POPOVA, S.D.; GOVINDARAJAN, N.; BRANDT, K.; ZHANG, Y.; CHANG, W.; AMPATZIS, K.; KIZIL, C. Neuron-glia interactions through serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer´s model of adult zebrafish brain. Plos Biol. 2020 (18): e3000585.

BRACCI-LAUDIERO L., MARIA EGLE DE STEFANO, NGF in Early Embryogenesis, Differentiation, and Pathology in the Nervous and Immune Systems, Neurotoxin Modeling of Brain Disorders: Life-long Outcomes in Behavioral Teratology, Kostrzewa, R.M.; Archer, T., Springer: Springer International Publishing Switzerland, 2016; Vol. 29, pp. 125-152

BRICK, R.M.; SUN, A.X.; TUAN, R.S. Neurotrophically Induced Mesenchymal Progenitor Cells Derived From Induced Pluripotent Stem Cells Enhance Neuritogenesis via Neurotrophin and Cytokine Production. Stem Cells Transl Med. 2018(7): 45-58.

BOSCH, E.P., ZHONG, W. AND LIM, R. (1989) Axonal signals regulate expression of glia maturation factor-be in Schwann cells: an immunohistochemical study of injured sciatic nerves and cultured Schwann cells. J Neurosci, 9: 3690-3698.

BOYD, J.G.; GORDON, T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp. Neurol. 2003, 183, 610–619, doi:10.1016/s0014-4886(03)00183-3.

BUJ-BELLO, A.; BUCHMAN, V.L.; HORTON, A.; ROSENTHAL, A.; DAVIES, A.M. GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 1995, 15, 821–828, doi:10.1016/0896-6273(95)90173-6.

CAI, Q.; WU, G.; ZHU, M.; GE, H.; XUE, C.; ZHANG, Q.; CHENQ, B.; XU, S.; WU, P. FGF6 enhances muscle regeneration after nerve injury by relying on ERK1/2 mechanism. Life Sci. 2020 (248): 117465.

CHANDROSS, K. J; CHANSON, M; SPRAY, D. C; KESSLER, J. A. Transforming growth factor-beta 1 and forskolin modulate gap junctional communication and cellular phenotype of cultured Schwann cells. J Neurosci 1995. Jan; 15 (1 Pt 1): 262-73.

CHEN, C. ET AL. Insulin-like growth factor-1 attenuates apoptosis and protects neurochemical phenotypes of dorsal root ganglion neurons with paclitaxel-induced neurotoxicity in vitro. Nutr. Neurosci. 2017 (20): 89 –102.

CHENG, H. L; SHY, M; FELDMAN, E. L. Regulation of insulin-like growth factor-binding protein-5 expression during Schwann cell diferentiation. Endocrinology 1999. Oct; 140 (10): 4478-85.

CHENG, H. L; FELDMAN, E. L. Insulin-like growth factor-I (IGF-I) and IGF binding protein-5 in Schwann cell differentiation. J. Cell Physiol. 1997. May; 171 (2): 161-7.

CHENG, L., ESCH, F.S., MARCHIONNI, M.A. AND MUDGE, A.W. (1998) Control of Schwann cell survivel and proliferation: autocrine factors and neuregulins. Molecular and Cellular Neuroscience, 12: 141-156.

CHOI-LUNDBERG, D.L. AND BOHN, M.C. (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev Brain Res, 85: 80-88.

CONNOR PJ . Prevalence of spinal cord injury in Australia. Spinal Cord 2005; 43: 42–46

COVACEUSZACH, S.; CAPSONI, S.; UGOLINI, G.; SPIRITO, F.; VIGNONE, D.; CATTANEO, A. Development of a non invasive NGF-based therapy for Alzheimer´s disease. Curr Alzheimer Res. 2009. Apr;6(2):158-70. doi: 10.2174/156720509787602870.

DAVIS, J. B; STROOBANT, P. Platelet-derived growth factors and fibroblast growth factors are mitogens for rat Schwann cells. J. Cell Biol. 1990. Apr; 110 (4): 1353-60.

DAVIS, M.I. Ethanol-BDNF interactions: Still more questions than answers. Pharm 2008, 118, 36–57.

DAY, W. A; KOISHI, K; MCLENNAN, I. S. Transforming growth factor beta 1 may regulate the stability of mature myelin sheaths. Exp Neurol 2003. Dec; 184(2): 857-64.

DEVIVO MJ. Causes and costs of spinal cord injury in the United States. Spinal cord. 1997;35(12):809–813.

DEVIVO MJCY, MENNEMEYER ST, DEUTSCH A. Cost of Care Following Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation. 2011;16(4).

DEVIVO, M.J. Epidemiology of Traumatic Spinal Cord Injury: Trends and Future Implications. Spinal Cord 2012. May; 50(5):365-72. doi: 10.1038/sc.2011.178.

DONG, Z; SINANAN, A; PARKINSON, D; PARMANTIER, E; MIRSKY, R; JESSEM, K. R. Schwann cell development in embryonic mouse nerves. J Neurisci Res 1999. May 15; 56 (4): 334-48.

DOWSING, B. J; MORRISON, W. A; NICOLA, N. A; STARKEY, G. P; BUCCI, T; KILPATRICK, T. J. Leukemia inhibitory factor is an autocrine survival for Schwann cells. J Neurochem 1999. Jul; 73(1): 96-104.

EGGERS, R.; WINTER, F.; ARKENAAR, C.; TANNEMAAT, M.R.; VERHAAGEN, J. Enhanced regeneration and reinnervation following timed GDNF gene therapy in a cervical ventral root avulsion. Exp. Neurol. 2019 (321): 113037.

EINHEBER, S; HANNOCKS, M. J; METZ, C. N; RIFKIN, D. B; SALZER, J. L. Transforming growth factor-beta 1 regulates axon/Schwann cell interactions. J Cell Biol 1995. Apr; 129(2): 443-58.

FELLING, R.J.; COVEY, M.V.; WOLUJEWICZ, P.; BATISH, M.; LEVISON, S.W. Astrocyte-produced Leukemia Inhibitory Factor Expands the Neural Stem/Progenitor Pool Following Perinatal Hypoxia-Ischemia. J. Neurosci. Res. 2016 (94): 1531-1545.

FINE, E.G.; DECOSTERD, I.; PAPALOIZOS, M.; ZURN, A.D.; AEBISCHER, P. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur. J. Neurosci. 2002, 15, 589–601, doi:10.1046/j.1460-9568.2002.01892.x.

FISCHER, W.; WICTORIN, K.; BJÖRKLUND, A.; WILLIAMS, L. R.; VARON, S.; GAGE, F. H. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 1987; Vol. 329: 65-68.

FOX, C.M.; ALDER, R. N. Mecanismos Neurais do envelhecimento. In: COHEN, H. ed. Neurociência para Fisioterapeutas. São Paulo: Manole, 2001.

FRIEDMAN, B; SCHERER, S. S; RUDGE, J. S; HELGREN, M; ET AL. Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron 1992. Aug; 9(2): 295-305.

GALVÃO, T.F; PANSANI, T.S.A; HARRAD, D. Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiol. Serv. Saúde. 2015. 24(2). doi: 10.5123/S1679-49742015000200017.

GANONG, W. F. Tecido Excitável: Nervo. In: Fisiologia Médica. ed. Rio de Janeiro: Lange, 1998.

GASH, D. M.; ZHANG, Z.; OVADIA, A.; CASS, W. A.; YI, A.; SIMMERMAN, L.; RUSSELL, D.; MARTIN, D.; LAPCHAK, P. A.; COLLINS, F.; HOFFER, B. J.; GERHARDT, G. A. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996; Vol. 380: 252-255.

GOSPODAROWIEZ, D., FERRARA, N., SCHWEIGERER, L. AND NEUFELD, G. (1987) Structural characterization and biological functions of fibroblastic growth factor. Endocr Rev, 8: 95-114.

GROOTJANS, J.; KASER, A.; KAUFMAN, R.J.; BLUMBERG, R.S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 2016 (16): 469-484.

GUENARD, V; ROSENBAUM, T; GWYNN, L. A; DOETSCHMAN, T; RATNER, N; WOOD, P. M. Effect of transforming growth factor-beta 1 and –beta 2 on Schwann cell proliferation on neurites. Glia 1995a. Apr; 13(4): 309-18.

GUENARD, V; GWYNN, L. A; WOOD, P. M. Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro. J Neurosci 1995b. Jan; 15(1 Pt 1): 419-28.

GUMY LF, TAN CL, FAWCETT JW. The role of local protein synthesis and degradation in axon regeneration. Exp Neurol. 2010; 223: 28-37.

GOLZADEH, A.; MOHAMMADI, R. Effect of local administration of platelet-derived growth factor B on functional recovery of peripheral nerve regeneration: A sciatic nerve transection model. Dent Res J. 2016 (13): 225-32.

GOMEZSANCHEZ JA, CARTY L, IRUARRIZAGALEJARRETA M, PALOMOIRIGOYEN M, VARELAREY M, GRIFFITH M, ET AL. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. Journal of Cell Biology. 2015; 210: 153-68.

HELD, J. M.; PAY, T. Recuperação da Função após Lesão Cerebral. In: COHEN, H. ed. Neurociência para Fisioterapeutas. São Paulo: Manole, 2001.

HOHN, A.; LEIBROCK, J.; BAILEY, K.; BARDE, Y.A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 1990, 344, 339–341.

HOKE A, HO T, CRAWFORD TO, LEBEL C, HILT D, GRIFFIN JW. (2003) Glial cell line-derived neurotrophic factor alters axon Schwann cell units and promotes myelination in unmyelinated nerve fibers. The Journal of Neuroscience, 23: 561-567.

HOUGHTON PE, CAMPBELL KE, CPG Panel. Canadian Best Practice Guidelines for the Prevention and Management of Pressure Ulcers in People with Spinal Cord Injury. A Resource Handbook for Clinicians, 2013.

HU Y, GUO TC, ZHANG XY, TIAN J, LU YS. Paired associative stimulation improves synaptic plasticity and functional outcomes after cerebral ischemia. Neural Regen Res. 2019 (14): 1968-1976.

HUANG, J.Y.; MISKUS, M.L.; LU, H.C. FGF-FGFR mediates the activity-dependent dendritogenesis of layer IV neurons during barrel formation. J. Neurosci. 2017 (37): 12094-12105.

JANG SY, YOON BA, SHIN YK, YUN SH, JO YR, CHOI YY, ET AL. Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia. 2017; 65: 1848-62.

JESSEL, T. Desenvolvimento do Sistema Nervoso. In: KANDEL, E. R.; SCHWARTZ, J. H.; JESSEL, T. M. ed. Fundamentos da Neurociência e do Comportamento. Rio de Janeiro: Guanabara Koogan, 2000.

KAMAMARU, H.; KADOYA, K.; ADLER, A.F.; TAKASHIMA, Y.; GRAHAM, L.; COPOLLA, G.; ET AL. Generation and post-injury integration of human spinal cord neural stem cells. Nat. Methods. 2018. 15, 723-731.

KATARIA, H.; ALIZADEH, A.; SHAHRIARY, G.M.; RIZI, S.S.; HENRIE, R.; SANTHOSH, K.T.; THLIVERIS, J.A.; ABDOLREZAEE, S.K. Neuregulin-1 Promotes Remyelination and Fosters a Pro-Regenerative Inflammatory Response in Focal Demyelinating Lesions of the Spinal Cord. Glia. 2018 (66): 538-561.

KAYTON, R.J. AND AKTAS, R.G. (2000) Electron microscopic immunolocalization of basic fibroblast growth factor in peripheral nerves. Histochem Cell Biol, 114: 413-419.

KEEFE, K.M.; SHEIKH, I.S.; SMITH, G.M. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury. Int J Mol Sci. 2017 (18): 548.

KO, C.C.; TU, T.H.; WU, J.C.; HUANG, W.C.; TSAI, Y.A.; HUANG, S.F.; HUANG, H.C.; CHENG, H. Functional Improvement in Chronic Human Spinal Cord Injury: Four Years After Acidic Fibroblast Growth Factor. Sci Rep. 2018. Aug 23;8(1):12691. doi: 10.1038/s41598-018-31083-4.

KOWIANSKI, P.; LIETZAU, G.; CZUBA, E.; WASKOW, M.; STELIGA, A.; MORYS, J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol. Neurobiol. 2018, 38, 579–593, doi:10.1007/s10571-017-0510-4.

KLIMOVICH, P.; RUBINA, K.; SYSOEVA, V.; SEMINA, E. Three-Dimensional Model of Dorsal Root Ganglion Explant as a Method of Studying Neurotrophic Factors in Regenerative Medicine. Biomedicines. 2020. Mar. 3; 8 (3).

LEE, D. A; ZURAWEL, R. H; WINDEBANK, A. J. Ciliary neurotrophic factor expression in Schwann cells is induced by axonal contact. J Neurochem 1995. Aug; 65(2): 564-8.

LEE, BB; CRIPPS, RA; FITZHARRIS, M; WING, PC. The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate. Spinal Cord. 2014; 52:110---6.

LI, S.; GU, X.; YI, S. The Regulatory Effects of Transforming Growth Factor-β on Nerve Regeneration. Cell Transplant. 2017 (26): 381-394.

LI, R.; DUOHUI, L.; CHENGBIAO, W.; YE, L.; WU, Y.; ET AL. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics. 2020 (4): 1649-1677.

LIU, S.; SARKAR, C.; DINIZO, M.; FADEN, A.I.; KOH, E.Y.; LIPINSKI, M.M.; ET AL. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015 (6): e1582.

LOBSIGER, C. S; SCHWEITZER, B; TAYLOR, V; SUTER, U. Plateled-derived growth factor-BB supports the survival of cultured rat Schwann cell precursors in synergy with neurotrophin-3. Glia 2000. May; 30 (3): 290-300.

MA, V.Y.; CHAN, L.; CARRUTHERS, K.J. Incidence, Prevalence, Costs, and Impact on Disability of Common Conditions Requiring Rehabilitation in the United States: Stroke, Spinal Cord Injury, Traumatic Brain Injury, Multiple Sclerosis, Osteoarthritis, Rheumatoid Arthritis, Limb Loss, and Back Pain. Arch Phys Med Rehabil. 2014. May;95(5):986-995.e1. doi: 10.1016/j.apmr.2013.10.032.

MAHANTHAPPA, N.K., ANTON, E.S. AND MATTHEW, W.D. (1996) Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J Neurosci, 16: 4673-4683.

MANIWA, S; IWATA, A; HIRATA, H; OCHI, M. Effects of neurotrophic factors on chemokinesis of Schwann cells in culture. Scand J Plast Reconstr Surg Hand Surg 2003; 37 (1): 14-7.

MATSUOKA, I; NAKANE, A; KURIHARA, K. Induction of LIF-mRNA by TGF-beta 1 in Schwann cells. Brain Res 1997. Nov. 21; 776(1-2): 170-80.

MENEI, P., MENEI-MONTERO, C., WHITTEMORE, S.R., BUNGE, R.P. AND BUNGE, M.B. (1998) Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. European Journal of Neuroscience, 10: 607-621.

MEYER, M., MATSUOKA, I., WETMORE, C., OLSON, L. AND THOENEN, H. (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol, 119: 45-54.

MIRSKY, R; JESSEN, K. R; BRENNAN, A; PARKINSON, D; DONG, Z; MEIER, C; PARMANTIER, E; LAWSON, D. Schwann cells as regulators of nerve development. J. Physiol Paris 2002. Jan-Mar; 96(1-2): 17-24.

MONTAGUE, K.; MALIK, B.; GRAY, A.L.; LA SPADA, A.R.; HANNA, M.G.; SZABADKAI, G. ET AL. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy. Brain. 2014 (137), 1894-1906.

MORANO, M., RONCHI, G., NICOLO, V., FORNASARI, B. E., CROSIO, A., PERROTEAU, I., ET AL. Modulation of the Neuregulin1/ErbB system after skeletal muscle denervation and reinnervation. Sci. Rep. 2018 (8):5047. doi: 10.1038/s41598-01823454-8.

MUN-BRYCE, S. A. Elementos Fundamentais do Sistema Nervoso 3: Circulação e Células Não-nervosas. In: COHEN, H. ed. Neurociência para Fisioterapeutas. São Paulo: Manole, 2001.

NAGAMOTO-COMBS, K; VACCARIELLO, S. A; ZIGMOND, R. E. The levels of leukemia inhibitory factor mRNA in a Schwann cell line are regulated by multiple second messenger pathways. J Neurochem 1999. May; 72(5): 1871-81.

NAMIKI, J; KOJIMA, A; TATOR, C. H. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 2000. Dec; 17(12): 1219-31.

NAMGUNG, U. The role of Schwann cell-axon interaction in peripheral nerve regeneration. Cells Tissues Organs 2014, 200, 6–12, doi:10.1159/000370324.

NEUBERGER, T. J; DE VRIES, G. H. Distribution of fibroblast growth factor in cultured dorsal root ganglion neurons and Schwann cells. I. Localization during maturation in vitro. J. Neurocytol. 1993a. Jun; 22(6):436-48.

NEUBERGER, T. J; DE VRIES, G. H. Distribution of fibroblast growth factor in cultured dorsal root ganglion neurons and Schwann cells. II. Redistribution after neural injury. J. Neurocytol. 1993b. Jun; 22(6): 449-60.

NGUYEN, D.; SULAIMAN, O.A.R. Transforming Growth Factor Beta 1 Regulates Fibroblast Growth Factor 7 Expression in Schwann Cells. Ochsner J. 2019 (19): 7-12.

OGAI, K.; KUWANA, A.; HISANO, S.; NAGASHIMA, M.; KORIYAMA, Y.; SUGITANI, K.; MAWATARI, K.; NAKASHIMA, H.; KATO, S. Upregulation of Leukemia Inhibitory Factor (LIF) During the Early Stage of Optic Nerve Regeneration in Zebrafish. Plos One. 2014 (9): e106010.

ONGER, M; DELIBAS, B; TURKMEN, A; ERENER, E; ALTUNKAYNAK, B; KAPLAN, S. The role of growth factors in nerve regeneration. Drug Discov. Ther. 2016, 10, doi:10.5582/ddt.2016.01058.

OYA, T., ZHAO, Y.L., TAKAGAWA, K., KAWAGUCHI, M., SHIRAKAWA, K., YAMAUEL, T., SASAHARA, M. (2002). Plated-derived growth factor-b induced after rat peripheral nerve injuries. Glia. Jun; 38 (4): 303-12.

PELLEGATTA, M.; TAVEGGIA, C. The complex work of proteases and secretases in Wallerian degeneration: beyond neuregulin-1. Front Cell Neurosci. 2019 (93).

PÉREZ K, NOVOA AM, SANTAMARINA-RUBIO E, NARVAEZ Y, ARRUFAT V, BORRELL C, et al. Incidence trends of traumatic spinal cord injury and traumatic brain injury in Spain, 2000-2009. Accid Anal Prev. 2012; 46:37-44.

QUARTA S, BAEUMER BE, SCHERBAKOV N, ANDRATSCH M, ROSE-JOHN S, DECHANT G, ET AL. Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci. 2014; 34: 13222-33.

RAABE, T.D., CLIVE, D.R., NEUBERGER, T.J., WEN, D. AND DEVRIES, G.H. (1996) Cultured neonatal Schwann cells contain and secrete neuregulins. J Neurosc Res, 46: 263-270.

REIMERS, D; PRIETO, R; GIMENEZ-GALLEGO, G; CUEVAS, P; BARRIO, L. C. Acidic fibroblast growth factor inhibits junctional communication of Schwann cells in culture. Neurol Res 2000. Oct; 22(7): 685-91.

RICHARDSON, P. M. Ciliary neurotrophic factor: a review. Pharmacol Ther 1994. Aug; 63(2): 187-98.

RIDLEY, A. J; DAVIS, J. B; STROOBANT, P; LAND, H. Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol 1989. Dec; 109 (6 Pt 2): 3419-24.

RIZZI C, TIBERI A, GIUSTIZIERI M, MARRONE MC, GOBBO F, CARUCCI NM, ET AL. NGF steers microglia toward a neuroprotective phenotype. Glia. 2018; 66: 1395-416.

ROSENBAUM, C., KARYALA, S., MARCHIONNI, M.A., KIM, H.A., KRASNOSELSKY, A.L., HAPPEL, B., ISAACS, I., BRACKERNBURY, R. AND RATNER, N. (1997) Schwann cells express NDF and SMDF/n-ARIA mRNAs, secrete neuregulin, and show constitutive activation of erbB3 receptors evidence for a neuregulin autocrine loop. Exp Neurol, 148: 604-615.

ROWE DD, COLLIER LA, SEIFERT HA, CHAPMAN CB, LEONARDO CC, WILLING AE, PENNYPACKER KR. Leukemia inhibitor factor promotes functional recovery and oligodendrocyte survival in rat models of focal ischemia. Eur J Neurosci. 2014;40:3111–3119.

RUSH, R.A. (1984) Immunohistochemical localization of endogenous nerve growth factor. Nature, 312: 364-367.

SCHNELL, L.; SCHNEIDER, R.; KOLBECK, R.; BARDE, Y.A.; SCHWAB, M.E. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 1994, 367, 170–173.

SANTOS, D.; GONZALEZ-PERES, F.; NAVARRO, X.; DEL VALLE, J. Dose-Dependent Differential Effect of Neurotrophic Factors on In Vitro and In Vivo Regeneration of Motor and Sensory Neurons. Neural Plast. 2016. doi: 10.1155/2016/4969523

SANTOS, D.; PEREZ, F.G.; GIUDETTI, G.; MICERA, S.; UDINA, E.; VALLE, J.D.; NAVARRO, X. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components With Neurotrophic Factors. Int J Mol Sci. 2017. 18(65). doi:10.3390/ijms18010065

SCHERER, S. S; KAMHOLZ, J; JAKOWLEW, S. B. Axons modulate the expression of transforming growth factor-betas in Schwann cells. Glia 1993. Aug; 8(4):265-76.

SENDTNER, M; ARAKAWA, Y; STOCKLI, K. A; KREUTZBERG, G. W; THOENEN, H. Effect of ciliary neurotrophic factor (CNTF) on motoneuron survival. J Cell Sci Suppl 1991; 15: 103-9.

SENDTNER, M; CARROLL, P; HOLTMANN, B; HUGHES, R. A; THOENEN, H. Ciliary neurotrophic factor. J Neurobiol 1994. Nov; 25(11): 1436-53.

SHANG,A.J.;HONG,S.Q.;XU,Q.;WANG,H.Y.;YANG,Y.;WANG,Z.F.;XU,B.N.;JIANG,X.D.;XU,R.X.NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res. 2011, 1391, 102–113.

SINGH, R.; SU, J.; BROOKS, J.; TERAUCHI, A.; UMEMORI, H.; FOX, M.A. Fibroblast growth factor 22 contributes to the development of retinal nerve terminals in the dorsal lateral geniculate nucleus. Front. Mol. Neurosci. 2012 (4): 61.

SOBUE, G. (1990) The role of Schwann cells in peripheral nerve degeneration a regeneration—NGF-NGF receptor system. Rinsho Shinkeigaku, Dec; 30 (12): 1358-60.

SOFRONIEW, M.V. Dissecting spinal cord regeneration. Nature. 2018. 557, 343-350.

STASSART, R. M., FLEDRICH, R., VELANAC, V., BRINKMANN, B. G., SCHWAB, M. H., MEIJER, D., ET AL. A role for Schwann cell-derived neuregulin-1 in remyelination. Nat.Neurosci. 2013 (16),48–54.doi:10.1038/nn.3281.

STEWART, H. J; ROUGON, G; DONG, Z; DEAN, C; JESSEN, K. R; MIRSKY, R. TGF-betas up regulate NCAM and L1 expression in cultured Schwann cells, suppress cyclic AMP-induced expression of O4 and galactocerebroside, and are widely expressed in cells of the Schwann cell lineage in vivo. Glia 1995. Dec; 15(4): 419-36.

SULAIMAN, O. A; GORDON, T. Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term Schwann cell denervation on peripheral nerve regeneration in vivo. Glia 2002. Mar. 1; 37(3): 206-18.

SULAIMAN, W.; NGUYEN, D.H. Transforming Growth Factor Beta 1, a Cytokine With Regenerative Functions. Neural Regen Res. 2016 (11): 1549-1552.

SYROID, D.E., ZORICK, T.S., ARBET-ENGELS, C., KILPATRICK, T.J., ECKHART, W. AND LEMKE, G. (1999) A role for insulin-like growth factor-I in the regulation of Schwann cell survival. 19: 2059-2068.

TANEDA, M. Tratamento com fator neurotrófico derivado da linhagem das células gliais em pacientes com doença de Parkinson. Brazilian Journal of Development. 2020. v.6, n.6: p.35648-35662. https://doi.org/10.34117/bjdv6n6-197. DOI:10.34117/bjdv6n6-197.

TERAUCHI, A.; JOHNSON, E.M.; TOTH, A.B.; JAVED, D.; SUTTON, M.A.; UMEMORI, H. Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature. 2010 (465): 783-787.

TOPILKO, P., MURPHY, P. AND CHARNAY, P. (1996) Embryonic development of Schwann cells: multiple roles for neuregulins along the pathway. Mol Cell Neurosci, 8: 71-75.

VARON, S.S; CONNER, J.M.; KUANG, R.Z. Neurotrophic Factors: Repair and Regeneration in the Central Nervous System. Restor Neurol Neurosci. 1995. 8(1): 85-94.

VEGA-MELENDEZ, G.S.; BLAGBURN, J.M.; BLANCO, R.E. Ciliary Neurotrophic Factor and Fibroblast Growth Factor Increase the Speed and Number of Regenerating Axons After Optic Nerve Injury in Adult Rana Pipiens. J. Neurosci. Res. 2014 (92): 13-23.

VOGELI, C.; SHIELDS, A.E.; LEE, T.A.; GIBSON, T.B.; MARDER, W.D.; WEISS, K.B.; BLUMENTHAL, D. Multiple Chronic Conditions: Prevalence, Health Consequences, and Implications for Quality, Care Management, and Costs. J Gen Intern Med. 2007. 22(3): 391-395.

WALKER, M.; XU, X.M. History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and Its Use for Spinal Cord Injury Repair. Brain Sci. 2018 (8): 109.

WANG, Y.Y.; GONG, P.; ZHANG, J. Effects of plateled-derived growth factor on nerve regeneration around implant in rats. Journal of Stomatology. 2019 (37): 350-354.

WATABE, K; FUKUDA, T; TANAKA, J; TOYOHARA, K; SAKAI, O. Mitogenic effects of plateled-derived growth factor, transforming growth factor-beta, and heparin-binding serum factor for adult mouse Schwann cells. J Neurosci Res 1994. Dec. 1; 39(5): 525-34.

WEN, S.Y.; LI, A.M.; MI, K.Q.; WANG, R.Z.; LI, H.; LIU, H.X.; XING, Y. In vitro Neuroprotective Effects of Ciliary Neurotrophic Factor on Dorsal Root Ganglion Neurons With Glutamate-Induced Neurotoxicity. Neural Regen Res. 2017 (12): 1716-1723.

WYNDAELE, J.J. Developing a Spinal Cord Injury Research Strategy. Spinal Cord. 2015, 53(10): 713.

YAMAUCHI, J; CHAN, J. R; SHOOTER, E. M. Neutrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci U S A. 2003. Nov. 25; 100(24): 14421-6.

YAN, L. ET AL. Anti-apoptotic effect of IGF1 on Schwann exposed to hyperglycemia is mediated by neuritin, a novel neurotrophic factor. Mol. Neurobiol. (2016).

ZHANG, J. Y; LUO, X. G; XIAN, C. J; LIU, Z. H; ZHOU, X. F. Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci 2000. Dec; 12(12): 4171-80.

ZHOU, Y.; WU, Y.; LIU, Y.; HE, Z.; ZOU, S.; WANG, Q.; ET AL. The cross-talk between autophagy and endoplasmic reticulum stress in blood-spinal cord barrier disruption after spinal cord injury. Oncotarget. 2017 (8): 1688-1702.

ZHU, S.P.; WANG, Z.G.; ZHAO, Y.Z.; WU, J.; SHI, H.X.; YE, I.B.; ET AL. Gelatin nanostructured lipid carriers incorporating nerve growth factor inhibit endoplasmic reticulum stress-induced apoptosis and improve recovery in spinal cord injury. Mol. Neurobiol. 2016 (53): 4375-4386.

ZHU, H.; XUE, C.; YAO, M.; WANG, H.; ZHANG, P.; QIAN, T.; ZHOU, S.; LI, S.; YU, B.; WANG, Y.; GU, X. miR-129 Controls Axonal Regeneration via Regulating Insulin-Like Growth factor-1 in Peripheral Nerve Injury. Cell Death Dis. 2018 (9): 720.

ZHU, S.; CHEN, M.; CHEN, M.; YE, J.; YING, Y.; WU, Q.; DOU, H.; BAI, L.; MAO, F.; NI, W.; YU, K. Fibroblast growth factor 22 inhibits ER stress-induced apoptosis and improves recovery of spinal cord injury. Frontiers in Pharmacology. 2020. 11(18).




DOI: https://doi.org/10.34115/basrv4n4-012

Apontamentos

  • Não há apontamentos.