Caracteristicas e aplicações dos Glicosaminoglicanos: uso de subprodutos da indústria de alimentos/ Characteristics and applications of glycosaminoglycans: use of by-products of the food industry

Authors

  • Heloisa Cristina de Moura
  • Cláudio Roberto Novello
  • Alexandre da Trindade Alfaro
  • Helyn Priscila de Oliveira Barddal
  • Evellin Balbinot Alfaro
  • Elisângela Düsman

DOI:

https://doi.org/10.34115/basrv4n3-053

Keywords:

Polissacarídeos. GAG’s. Propriedades terapêuticas.

Abstract

Os glicosaminoglicanos (GAG´s) são polissacarídeos aniônicos, lineares, compostos basicamente por hexosamina, ácido urônico e galactose. São eles o sulfato de condroitina (CS), sulfato de dermatana (DS), ácido hialurônico (HA), sulfato de queratana (KS), heparina (HE) e sulfato de heparana (HS). A diferença de densidade de cargas negativas e o grau de sulfatação determinam suas propriedades estruturais e biológicas. As propriedades terapêuticas dos GAG´s estão correlacionadas com sua capacidade de se ligar as proteínas. Os GAG´s sulfatados têm sido amplamente utilizados como anticoagulantes, com destaque para a heparina (HE). Diversos estudos também apontam para atividades regenerativa, antiviral, antiproliferativa e anti-inflamatória. A crescente demanda por GAG´s está impulsionando uma série de pesquisas para a descoberta de novas fontes de isolamento. Os subprodutos da indústria de alimentos são uma potencial fonte para obtenção de glicosaminoglicanos.

References

AFRATIS, N. et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS Journal, v. 279, n. 7, p. 1177–1197, Apr, 2012.

ANDRADE, G.P.V. et al. A heparin-like compound isolated from a marine crab rich in glucuronic acid 2-O-sulfate presents low anticoagulant activity. Carbohydrate Polymers, v. 94, n.1, p. 647–654, 2013.

ARIMA, K. et al. Amounts and compositional analysis of glycosaminoglycans in the tissue of fish. Carbohydrate Research, v. 366, p. 25-32, 2013.

BASAPPA, M. S. et al. Involvement of chondroitin sulfate E in the liver tumor focal formation of murine osteosarcoma cells. Glycobiology, v.19, n. 7, p. 735–742. Jul. 2009.

BRITO, A.S. et al. A non-hemorrhagic hybrid heparin/ heparan sulfate with anticoagulant potential. Carbohydrate Polymers. v. 99, p. 372–378, 2014.

CARLSSON, P.; KJELLÉN, L. Heparin Biosynthesis. In: LEVER, R.; MULLOY, B.; PAGE, C. P. Heparin – A Century of Progress, Springer, 2012, p. 23-42.

CHON, B. F.; BLANK, L. Metabolic engineering of hyaluronic acid production. The department of chemical engineerinf, university of Queensland, St. Lucia, Australia, 1998.

DAHLBACK, B. Blood coagulation. Lancet, v. 355, p. 1627-1632, 2000.

FLENGSRUD, R.; LARSEN, M. L., ODEGAARD, O. R. Purification, characterization and in vivo studies of salmon heparin. Thrombosis Research, v. 126, p. 409-417, 2010.

GANDRA, M., CAVALCANTE, M.C., PAVÃO, M.S. Anticoagulant sulfated glycosaminoglycans in the tissues of the primitive chordate Styela plicata (Tunicata). Glycobiology, v. 10, n. 12, p. 1333–1340, 2000.

GOMES, A.M. et al. Unique extracellular matrix heparan sulfate from the bivalve Nodipecten nodosus (Linnaeus, 1758) safely inhibits arterial thrombosis after photochemically induced endothelial lesion. Journal Biological Chemistry, v. 285, n. 10, p. 7312–7323, 2010.

GULATI, K., POLURI, K.M. Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconjugate Journal, v. 33, n.1, p. 1–17, 2016.

HIGASHI, K. et al. Functional chondroitin sulfate from Enteroctopus dofleini containing a 3-Osulfo glucuronic acid residue. Carbohydrate Polymers, v. 134, p. 557–565, 2015.

HILEMAN, R.E., FROMM, J.R., WEILER, J.M., LINHARDT, R.J. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. BioEssays, v.20, n. 2, p. 156–167, 1998.

KATO, D. Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein. Antiviral Research, v. 88, n. 2, p. 236–243, 2010.

KIM, J. et al. Seletion of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzime and Microbial Technology, v. 19, p. 440-445, 1996.

KRYLOV, V.B. Preliminary structural characterization, anti-inflammatory and anticoagulant activities of chondroitin sulfates from marine fish cartilage. Russian Chemical Bulletin, v.60, n. 4, p. 746, 2011.

LAMARI, F. N.; KARAMANOS, N. K. Structure of Chondroitin Sulfate. In: VOLPI, N. (Ed.). Chondroitin Sulfate: Structure, Role and Pharmacological Activity. Advances in Pharmacology, Elsevier, v. 53, p. 1-568, 2006.

LAURICELLA, A.M., CASTANON, M.M., KORDICH, L.C., QUINTANA, I.L. Alterations of fibrin network structure mediated by dermatan sulfate. Journal Thrombosis and Thrombolysis, v.35, p. 257–263,2013.

MAIMONE, M. M.; TOLLEFSEN, D. M. Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity. The Journau of Biology Chemistry, v. 265, p. 18263-18271, 1990.

MEDEIROS, G.F. et al, Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparin-like compounds in invertebrates. Biochimica et Biophysica Acta – General Subjects, v. 1475, n. 3, p. 287–294, 2000.

MOUSAVI, S., MORADI, M., KHORSHIDAHMAD, T., MOTAMEDI, M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Advances in Pharmacological and Pharmaceutical Sciences, v.2015, p. 1-14, 2015.

MUZZARELLI, R.A., GRECO, F., BUSILACCHI, A., SOLLAZZO, V., GIGANTE, A., Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydrate Polymers, v. 89, n. 3, p. 723–739, 2012.

NAKANO, T., BETTI, M., PIETRASIK, Z. Extraction, isolation and analysis of chondroitin sulfate glycosaminoglycans. Recent Patents on Food, Nutrition & Agriculture, v. 2, p. 61-74, 2010.

NOGUEIRA, A. V. et al. Viscera of fishes as raw material for extraction of glycosaminoclycans of pharmacological interest. International Journal of Biological Macromolecules, v. 121, p. 239-248, 2019.

ODUAH, E., LINHARDT, R., SHARFSTEIN, S. Heparin: past, present, and future.

Pharmaceuticals, v.9, n. 3, p. 38, 2016.

OSBORNE, S.A., DANIEL, R.A., DESILVA, K., SEYMOUR, R.B. Antithrombin activity and disaccharide composition ofdermatan sulfate from different bovine tissues. Glycobiology, v. 18, p. 225–234, 2008.

OSBORNE, S. A. et al. Extraction, purification and characterisation of dermatan sulphate from bovine collagen waste liquor. Food and Bioproducts Processing, v.99, p. 244-251, 2016.

PHARMA, L., 2012. Green Accounts, Esbjerg. p. 2012.

PLACE, E.S., EVANS, N.D., STEVENS, M.M. Complexity in biomaterials for tissue engineering. Nature Materials. v.8, n. 6. p. 457–470, 2009.

POMIN, V.H., 2014. Holothurian fucosylated chondroitin sulfate. Marine Drugs, v. 12, n. 1, p. 232–254, 2014.

POMIN, V. H., 2015. Dilemma in the glycosaminoglycan – Based therapy synthetic or naturally unique molecules? Medicinal Research Reviews, v. 35, n. 6, p. 1195-210, 2015.

PURUSHOTHAMAN, A., SUGAHARA, K., FAISSNER, A. Chondroitin sulfate “Wobble Motifs”modulate maintenance and differentiation of neural stem cells and their progeny. Journal of Biological Chemistry, v. 287, n.5, p. 2935–2942, 2012.

ROTH, M.; PAPAKONSTANTINOU, E.; KARAKIULAKIS, G.. Biological function of glycosaminoglycans. In: Garg, H. G.; Cowman, M. K.; Hales, C. A. Carbohydrate chemistry, biology and medical applications. Elsevier, 2008, p. 209-226.

RUDD, T, R. et al. Glycosaminoglycan origin and structure revealed by multivariate analysis of NMR and CD spectra. Glycobiology, v. 19, p. 52-67, 2009.

SAYARI, N. et al. Anticoagulant properties and cytotoxic effect against HCT116 human colon cell line of sulfated glycosaminoglycans isolated from the Norway lobster (Nephrops norvegicus) shell. Biomed Pharmacother, v.80, p. 322–330, 2016

SAMPAIO, L. O.; NADER, H. B. Emergence and structural characteristics of chondroitin sulfates in the animal kingdom. Advances in Pharmacology v. 53, n. 05, p. 233–251 , 2006.

SANTOS, J.C. et al. Isolation and characterization of a heparin with low antithrombin activity from the body of Styela plicata (Chordata-Tunicata). Distinct effects on venous and arterial models of thrombosis. Thrombosis Research, v. 121, n. 2, p. 213–223, 2007.

SHUHEI, Y., KAZUYUKI, S. Potential therapeutic application of chondroitin sulfate/ dermatan sulfate. Current Drug Discovery Technologies, v. 5, n. 4, p. 289–301, 2008.

SERRANO, M.C. et al. Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair. Biomaterials, v. 35, n. 5, p.1543–1551, 2014.

SOARES DA COSTA, D., REIS, R.L., PASHKULEVA, I. Sulfation of glycosaminoglycans and its implications in human health and disorders. Annual Review of Biomedical Enginnering.v. 19, p. 1-26, 2017.

SRICHAMROEN, A. et al., Chondroitin sulfate extraction from broiler chicken cartilage by tissue autolysis, v. 50, p. 607-612, 2013.

SUCASAS, L. F. A. Avaliação do resíduo do processamento de pescado e desenvolvimento de co-produtos visando o incremento da sustentabilidade da cadeia produtiva. 2011. 166f. Tese de Doutorado (Doutorado em Ciências). Universidade de São Paulo, São Paulo.

SUGAHARA, K., MIKAMI, T. Chondroitin/dermatan sulfate in the central nervous

system. Current Opinion Structural Biology, v. 17, n. 5, p. 536–545, 2007.

TINGBO, M. G. et al. Type of carbohydrate in feed affects the expression of small leucine-rich proteoglycans (SLRPs) glycosaminoglycans (GAGs) and interleukins in skeletal muscle of Atlantic cod (Gadus morhua L.). Fish e Shellfish Immunology, v. 32, p. 582-589, 2012.

TORRI, G., GUERRINI, M. Quantitative 2D NMR analysis of glycosaminoglycans. In: HOLZGRABE, U., WAWER, I., DIEHL, B.). NMR spectroscopy in pharmaceutical analysis, p. 407-428, Elsevier, 2008

UNGER, S. et al. Phenotypic features of carbohydrate sulfotransferase 3 (CHST3) deficiency in 24 patients: congenital dislocationsand vertebral changes as principal diagnostic features. American Journal of Medical Genetics, v. 152, n. 10,p. 2543–2549, 2010.

VALCARCEL, J. et al., Glycosaminoglycans from marine sources as therapeutic agents. Biotechnology Advances; v. 35, p. 711-725, 2017.

VOLPI N. Therapeutic applications of glycosaminoglycans. Current Medicinal Chemistry; v. 13, p. 1799-1810, 2006.

VOLPI, N. Analytical Aspects of Pharmaceutical Grade Chondoitin Sulfates. Journal of Pharmaceutical Sciences, v. 96, n. 12, p. 3168-3180, 2007.

VOLPI, N., MACCARI, F. Structural characterization andantithrombin activity of dermatan sulfate purified frommarine clam Scapharca inaequivalvis. Glycobiology, v. 19, p. 356–367, 2009.

XU, H., YAN, Y., LI, S. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials, v. 32, n. 20, p. 4506–4516, 2011.

Published

2020-05-24

How to Cite

Moura, H. C. de, Novello, C. R., Alfaro, A. da T., Barddal, H. P. de O., Alfaro, E. B., & Düsman, E. (2020). Caracteristicas e aplicações dos Glicosaminoglicanos: uso de subprodutos da indústria de alimentos/ Characteristics and applications of glycosaminoglycans: use of by-products of the food industry. Brazilian Applied Science Review, 4(3), 1421–1436. https://doi.org/10.34115/basrv4n3-053

Issue

Section

Original articles