Antimicrobial activity of seaweeds extracts against pathogenic bacteria in aquaculture / Atividade antimicrobiana de extratos de algas frente a bactérias patogênicas na aquicultura

Authors

  • Lincoln G. Coronel
  • Rafaela G. Corrêa
  • Roberto B. Derner
  • Leila Hayashi
  • Marcelo Maraschin
  • Norha C. Bolívar-Ramírez
  • Felipe do N. Vieira

DOI:

https://doi.org/10.34115/basrv4n3-036

Keywords:

H. pluvialis, K. alvarezii, S. filipendula, U. pinnatifida, resistência múltipla.

Abstract

O presente trabalho teve como objetivo investigar a atividade antimicrobiana dos extratos metanólicos das algas Haematococcus pluvialis, Kappaphycus alvarezii, Sargassum filipendula e Undaria pinnatifida em cepas padrão e em bactérias patogênicas de organismos aquáticos. O método de microdiluição em caldo foi utilizado para determinação da concentração inibitória mínima (CIM) dos extratos. Além disso, foi determinado o perfil de suscetibilidade das bactérias frente a 12 antimicrobianos pelo método de disco-difusão em ágar. Os testes de atividade antimicrobiana mostraram que apenas os extratos de S. filipendula e U. pinnatifida inibiram todas as bactérias testadas, sendo U. pinnatifida o extrato com maior eficiência contra os patógenos. Também os testes mostraram predileção da atividade antimicrobiana da microalga de água doce H. pluvialis por micro-organismos de ambientes marinhos, enquanto as algas marinhas, K. alvarezii, S. filipendula e U. pinnatifida, mostraram-se mais eficazes na inibição do crescimento de cepas patogênicas de água doce. A multirresistência foi verificada em todas as cepas patogênicas isoladas testadas (Pseudomonas sp., S. agalactiae, V. alginolyticus and V. anguillarum). Os resultados sugerem que os extratos das algas exerceram atividade antimicrobiana frente as cepas de bactérias patogênicas da aquicultura, sendo o extrato da U. pinnatifida o que inibiu o crescimento dos micro-organismos com as menores concentrações.

References

ADAM K; SIVROPOULOU A; KOKKINI S, LANARAS T, ARSENAKIS M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifólia and Salvia fruticosa essential oils against human pathogenic fungi. Journal of Agricultural and Food Chemistry, v. 46, p. 1739- 1745, 1998.

BACHEREAU F, MARIGO G, ASTA J. Effects of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compound biosynthesis in Sedum album. Physiologia Plantarum, v. 104, p. 203-210, 1998.

BAUER, A. W., KIRBY W. M. M., SHERRIS J. C., TURCK M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., v 36, p. 493-496, 1966.

CABELLO F.C, GODFREY H.P, BUSCHMANN A. H, DÖLZ H.J, Aquaculture as yet another environmental gateway to the development and globalization of antimicrobial resistance, The Lancet Infectious Diseases, v. 16, Issue 7, p. 127-133, 2016.

CABRAL I.S.R. 2012. Extracts of seaweed as antioxidants and antimicrobial agents and their effects on quality of minced tilapia (Oreochromis niloticus). Center for Nuclear Energy in Agriculture, University of Sao Paulo; 2012.

DAWOOD, M.A., KOSHIO, S. AND ESTEBAN, M.Á., Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev Aquacult., v10: 950-974, 2018.

FOOD AND AGRICULTURE ORGANIZATION OF UNITED NATIONS – FAO. FAO yearbook. Fishery and Aquaculture Statistics. 2017/FAO annuaire, Rome, 2019.

GASTALHO S, SILVA GJ, RAMOS F. Antibiotics in aquaculture and bacterial resistance: health care impact. Acta Farmacêutica Portuguesa, v. 3, p. 28-44, 2014.

GORDON L, GIRAUD E, GANIÈRE JP, ARMAND F, BOUJU-ALBERT A, DE-LA-COTTE N. Antimicrobial resistance survey in a river receiving effluents from freshwater fish farms. Journal of applied microbiology, v. 102, p. 1167-1176, 2007.

GUARDABASSI L, KRUSE H. Princípios da utilização prudente e racional de antimicrobianos em animais. In: Guardabassi L, Jenses L, Kruse H (ed) Guia de Antimicrobianos em Veterinária, 1st edn. Artmed, Porto Alegre, pp 17–30, 2010.

HOOD JR, WILKINSON JM, CAVANAGH HMA. Evaluation of common antibacterial screening methods utilized in essential oil research. Journal of Essential Oil Research, v. 15, p. 428-433, 2013.

LIU X., STEELE J.C., MENG, X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, v. 223, p. 161-169, 2017.

MANIVANNAN K, KARTHIKAI-DEVI G, ANANTHARAMAN P, BALASUBRAMANIAN T. Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, v. 1,2 , p. 114-120, 2011.

MICHALAK, I. AND CHOJNACKA, K. Algae as production systems of bioactive compounds. Eng. Life Sci., v15, p. 160-176, 2015.

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO ; MAPA(2013) . Lista de substâncias proibidas e legislação correspondente (Updated in 02/10/2017). Available in: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/aditivos Accessed: 25 January 2020.

NASCIMENTO P.F.C., NASCIMENTO A.C., RODRIGUES C.S., ANTONIOLLI A.R., SANTOS P.O., BARBOSA-JÚNIOR A.M., TRINDADE R.C.. Atividade antimicrobiana dos óleos essenciais: uma abordagem multifatorial dos métodos. Brazilian Journal of Pharmacognosy, v. 17, p. 108-113, 2007.

PAL, A., KAMTHANIA, M. KUMAR, A. Bioactive Compounds and Properties of Seaweeds—A Review. Open Access Library Journal, 1, 1-17, 2014.

PARSAEIMEHR A, CHEN F. Algal bioactive diversities against pathogenic microbes. In: Méndez-Vilas A (ed), Microbial pathogens and strategies for combating them: science, technology and education. 2nd edn. Formatex, Badajoz, pp 796-803, 2013.

PÉREZ, M.J.; FALQUÉ, E.; DOMÍNGUEZ, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs., v. 14, p. 52, 2016.

PÉREZ-SÁNCHEZ T., MORA-SÁNCHEZ B., BALCÁZAR J. L. Biological Approaches for Disease Control in Aquaculture: Advantages, Limitations and Challenges. Trends in Microbiology, Volume 26, Issue 11, p. 896-903, 2018.

PRABHA V, PRAKASH DJ, SUDHA PN. Analysis of bioactive compounds and antimicrobial activity of marine algae Kappaphycus alvarezii using three solvent extracts. Internacional Journal of Pharmaceutical Sciences and Research, v. 4, p. 306-310, 2013.

RAJASULOCHANA P, DHAMOTHARAN R, KRISHNAMOORTHY P. Amino acids, fatty acids and minerals in Kappaphycus sp. Journal of Agricultural and Biological Science, v. 5, p. 1-12, 2010.

RAO AR, REDDY RLR, BASKARAN V, SARADA R, RAVISHANKAR GA. Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. Journal of Agricultural and Food Chemistry, v. 11, p. 8553-8559, 2010.

SANTOYO S., RODRÍGUEZ-MEIZOSO I., CIFUENTES A., JAIME L., GARCÍA-BLAIRSY G., SEÑORANS F.J., IBÁÑEZ E. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae, LWT. Food Science and Technology, v. 42, Issue 7, p. 1213-1218, 2009.

SASTRY VMVS, RAO GRK. Antibacterial substances from marine algae: successive extraction using benzene, chloroform and methanol. Botanica Marina, v. 37, p. 357-360, 1995.

SHANAB SMM. Antioxidant and antibiotic activities of some seaweeds (egyptian isolates). International Journal Of Agriculture and Biology, v. 9, p.

Published

2020-05-17

How to Cite

Coronel, L. G., Corrêa, R. G., Derner, R. B., Hayashi, L., Maraschin, M., Bolívar-Ramírez, N. C., & Vieira, F. do N. (2020). Antimicrobial activity of seaweeds extracts against pathogenic bacteria in aquaculture / Atividade antimicrobiana de extratos de algas frente a bactérias patogênicas na aquicultura. Brazilian Applied Science Review, 4(3), 1192–1205. https://doi.org/10.34115/basrv4n3-036

Issue

Section

Original articles