Hydrophobic immobilization of Burkholderia cepacia lipase onto octyl-silica for synthesis of flavors esters / Imobilização hidrofóbica da lipase de Burkholderia cepacia sobre octil-sílica para síntese de ésteres de sabores

Anderson dos Santos Barbosa, Sara Vitória Gama dos Santos, Lays Carvalho de Almeida, Willian Kopp, Paulo Waldir Tardioli, Raquel de Lima Camargo Giordano, Álvaro Silva Lima, Cleide Mara Faria Soares

Abstract


Burkholderia cepacia lipase (BCL) was immobilized onto silica modified with octyl groups (OS) and the biocatalyst (BCL-OS) was evaluated as its performance in the synthesis in organic medium (synthesis of flavor esters as a model). The maximum support loading was 0.375 genzyme/gsupport, yielding a biocatalyst with an activity of 1197 U/gsupport at pH 7.0 and 50 °C in the hydrolysis of olive oil. The biocatalyst BCL-OS showed to be 9-fold more stable than the free lipase at 60°C in buffer solution (absence of substrates), with an increase of half-life from 16 to 144 h. The physical-chemical characterization of silica, octyl silica, and BCL-OS biocatalyst allowed confirming the immobilization of BCL onto the modified silica. The biocatalyst had an excellent performance in the synthesis of flavor esters, yielding more than 85% esterification yield (based on acid consumption) for acetic and butyric acids as acyl donors, and ethanol, butanol and hexanol as acyl acceptors. The biocatalyst could be recycled by ten 5 h-cycles of butyl butyrate syntheses at 37°C in heptane, retaining around 80% of its initial activity. Therefore, these results indicate that the BCL immobilized onto silica modified with octyl groups is a promising biocatalyst for application in organic syntheses.

 

 

 


Keywords


octyl-modified silica, hydrophobic immobilization, lipase, esterification, flavor esters.

References


ABBAS, Houria; COMEAU, Louis. Aroma synthesis by immobilized lipase from Mucor sp. Enzyme and Microbial Technology, vol. 32, no. 5, p. 589–595, 2003. https://doi.org/10.1016/S0141-0229(03)00022-X.

ALMEIDA, Lays C.; BARBOSA, Anderson S.; FRICKS, Alini T.; FREITAS, Lisiane S.; LIMA, Álvaro S.; SOARES, Cleide M.F. Use of conventional or non-conventional treatments of biochar for lipase immobilization. Process Biochemistry, vol. 61, no. February, p. 124–129, 2017. DOI 10.1016/j.procbio.2017.06.020. Available at: http://dx.doi.org/10.1016/j.procbio.2017.06.020.

AMINI, Zeynab; ONG, Hwai Chyuan; HARRISON, Mark D.; KUSUMO, Fitranto; MAZAHERI, Hoora; ILHAM, Zul. Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Conversion and Management, vol. 132, p. 82–90, 2017. DOI 10.1016/j.enconman.2016.11.017. Available at: http://dx.doi.org/10.1016/j.enconman.2016.11.017.

ANGAJALA GANGADHARA A4 - PAVAN, PASUPALA A4 - SUBASHINI, RADHAKRISHNAN, Gangadhara A4 - Angajala. Lipases: An overview of its current challenges and prospectives in the revolution of biocatalysis. Biocatalysis and agricultural biotechnology, vol. v. 7, p. 257-270–2016 v.7, 2016. https://doi.org/10.1016/j.bcab.2016.07.001.

ASHJARI, Maryam; MOHAMMADI, Mehdi; BADRI, Rashid. Journal of Molecular Catalysis B : Enzymatic Chemical amination of Rhizopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports : Modulation of stability and selectivity. vol. 115, p. 128–134, 2015. .

ASMAT, Shamoon; HUSAIN, Qayyum; AZAM, Ameer. Lipase immobilization on facile synthesized polyaniline-coated silver-functionalized graphene oxide nanocomposites as novel biocatalysts: stability and activity insights. RSC Advances, vol. 7, no. 9, p. 5019–5029, 2017. DOI 10.1039/C6RA27926K. Available at: http://dx.doi.org/10.1039/C6RA27926K.

BARBOSA, Anderson dos S.; SILVA, Matheus Albuquerque de O.; CARVALHO, Nayara B.; MATTEDI, Silvana; IGLESIAS, Miguel Angel; FRICKS, Alini T.; LIMA, Álvaro S.; FRANCESCHI, Elton; SOARES, Cleide M. F. Immobilization of Lipase By Encapsulation in Silica Aerogel. Química Nova, vol. 37, no. 6, p. 969–976, 2014. DOI 10.5935/0100-4042.20140155. Available at: http://www.gnresearch.org/doi/10.5935/0100-4042.20140155.

BARBOSA, Anderson S.; LISBOA, Jessica A.; SILVA, Matheus A.O.; CARVALHO, Nayára B.; PEREIRA, Matheus M.; FRICKS, Alini T.; MATTEDI, Silvana; LIMA, Álvaro S.; FRANCESCHI, Elton; SOARES, Cleide M.F. The novel Mesoporous silica aerogel modified with protic ionic liquid for lipase immobilization. Quimica Nova, vol. 39, no. 4, p. 415–422, 2016. https://doi.org/10.5935/0100-4042.20160042.

BERNAL, Claudia; ILLANES, Andres; WILSON, Lorena. Heterofunctional Hydrophilic–Hydrophobic Porous Silica as Support for Multipoint Covalent Immobilization of Lipases: Application to Lactulose Palmitate Synthesis. Langmuir, vol. 30, no. 12, p. 3557–3566, 1 Apr. 2014. DOI 10.1021/la4047512. Available at: https://doi.org/10.1021/la4047512.

BERNAL, Claudia; MESA, Monica. Chapter 10 - Design and Characterization of Hierarchical Porous Inorganic Solids for Enzyme Immobilization: Potential Application in Industrial Processes. In: SADJADI, Samahe B T - Encapsulated Catalysts (ed.). [S. l.]: Academic Press, 2017. p. 309–333. DOI https://doi.org/10.1016/B978-0-12-803836-9.00010-9. Available at: http://www.sciencedirect.com/science/article/pii/B9780128038369000109.

BLANCH, HARVEY W.; CLARCK, Douglas S. Biochemical Engineering. New York: Marcel Dekker, Inc., 1996.

BLANCO, Rosa M; TERREROS, Pilar; FERNÁNDEZ-PÉREZ, Mónica; OTERO, Cristina; DÍAZ-GONZÁLEZ, Guadalupe. Functionalization of mesoporous silica for lipase immobilization: Characterization of the support and the catalysts. Journal of Molecular Catalysis B: Enzymatic, vol. 30, no. 2, p. 83–93, 2004. DOI https://doi.org/10.1016/j.molcatb.2004.03.012. Available at: http://www.sciencedirect.com/science/article/pii/S1381117704001201.

CARVALHO, Nayara B.; LIMA, Álvaro S.; SOARES, Cleide M.F. Uso de sílicas modificadas para imobilização de lipases. Quimica Nova, vol. 38, no. 3, p. 399–409, 2015. https://doi.org/10.5935/0100-4042.20140304.

CARVALHO, Nayara Bezerra; BARBOSA, José Murillo P; OLIVEIRA, Maria Vanessa S; FRICKS, Alini T; LIMA, Álvaro S; SOARES, Mara F. Quim. Nova,. vol. 36, no. 1, p. 52–58, 2013. .

CHAIBAKHSH, Naz; ABDUL RAHMAN, Mohd Basyaruddin; BASRI, Mahiran; SALLEH, Abu Bakar; RAHMAN, Raja Noor Zaliha Raja Abdul. Effect of alcohol chain length on the optimum conditions for lipase-catalyzed synthesis of adipate esters. Biocatalysis and Biotransformation, vol. 27, no. 5–6, p. 303–308, 1 Jan. 2009. DOI 10.3109/10242420903207584. Available at: https://doi.org/10.3109/10242420903207584.

CHOI, Jung-Min; HAN, Sang-Soo; KIM, Hak-Sung. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, vol. 33, no. 7, p. 1443–1454, 2015. DOI https://doi.org/10.1016/j.biotechadv.2015.02.014. Available at: http://www.sciencedirect.com/science/article/pii/S0734975015000506.

CIPOLATTI, Eliane Pereira; CERQUEIRA PINTO, Martina Costa; HENRIQUES, Rosana Oliveira; DA SILVA PINTO, José Carlos Costa; DE CASTRO, Aline Machado; FREIRE, Denise Maria Guimarães; MANOEL, Evelin Andrade. Chapter 5 - Enzymes in Green Chemistry: The State of the Art in Chemical Transformations. In: SINGH, Ram Sarup; SINGHANIA, Reeta Rani; PANDEY, Ashok; LARROCHE, Christian B T - Advances in Enzyme Technology (eds.). Biomass, Biofuels, Biochemicals. [S. l.]: Elsevier, 2019. p. 137–151. DOI https://doi.org/10.1016/B978-0-444-64114-4.00005-4. Available at: http://www.sciencedirect.com/science/article/pii/B9780444641144000054.

CORRADINI, Maria Carolina C.; GOMES, Raphael A.B.; LUIZ, Jaine H.H.; MENDES, Adriano A. Optimization of Enzymatic Synthesis of n-Propyl Acetate (Fruit Flavor Ester) – Effect of the Support on the Properties of Biocatalysts. Chemical Engineering Communications, vol. 203, no. 11, p. 1432–1442, 2016. DOI 10.1080/00986445.2016.1201658. Available at: http://dx.doi.org/10.1080/00986445.2016.1201658.

DE LIMA, N Lionete; MENDES, A Adriano; FERNANDEZ-LAFUENTE, Roberto; TARDIOLI, W Paulo; GIORDANO, D Raquel. Performance of Different Immobilized Lipases in the Syntheses of Short- and Long-Chain Carboxylic Acid Esters by Esterification Reactions in Organic Media. Molecules , vol. 23, no. 4, 2018. https://doi.org/10.3390/molecules23040766.

DICOSIMO, Robert; MCAULIFFE, Joseph; POULOSE, Ayrookaran J; BOHLMANN, Gregory. Industrial use of immobilized enzymes. Chemical Society Reviews, vol. 42, no. 15, p. 6437–6474, 2013. DOI 10.1039/C3CS35506C. Available at: http://dx.doi.org/10.1039/C3CS35506C.

DOS SANTOS, Jéssica Bravin Carmello; DA SILVA CRUZ, Rosineide Gomes; TARDIOLI, Paulo Waldir. Production of Whole-Cell Lipase from Streptomyces clavuligerus in a Bench-Scale Bioreactor and Its First Evaluation as Biocatalyst for Synthesis in Organic Medium. Applied Biochemistry and Biotechnology, vol. 183, no. 1, p. 218–240, 2017. https://doi.org/10.1007/s12010-017-2440-5.

FALLAVENA, Lucas P.; ANTUNES, Fábio H. F.; ALVES, Joana S.; PALUDO, Natalia; AYUB, Marco A. Z.; FERNANDEZ-LAFUENTE, Roberto; RODRIGUES, Rafael C. Ultrasound technology and molecular sieves improve the thermodynamically controlled esterification of butyric acid mediated by immobilized lipase from Rhizomucor miehei. RSC Advances, vol. 4, no. 17, p. 8675, 2014. DOI 10.1039/c3ra47315e. Available at: http://xlink.rsc.org/?DOI=c3ra47315e.

FAN, Yanli; SU, Feng; LI, Kai; KE, Caixia; YAN, Yunjun. Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production. Scientific Reports, vol. 7, no. 1, p. 45643, 2017. DOI 10.1038/srep45643. Available at: https://doi.org/10.1038/srep45643.

GULDHE, Abhishek; SINGH, Bhaskar; MUTANDA, Taurai; PERMAUL, Kugen; BUX, Faizal. Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renewable and Sustainable Energy Reviews, vol. 41, p. 1447–1464, 2015. DOI 10.1016/j.rser.2014.09.035. Available at: http://dx.doi.org/10.1016/j.rser.2014.09.035.

HASAN, Fariha; SHAH, Aamer Ali; HAMEED, Abdul. Industrial applications of microbial lipases. Enzyme and Microbial Technology, vol. 39, no. 2, p. 235–251, 2006. DOI https://doi.org/10.1016/j.enzmictec.2005.10.016. Available at: http://www.sciencedirect.com/science/article/pii/S0141022905004606.

KAPOOR, Manali; GUPTA, Munishwar Nath. Lipase promiscuity and its biochemical applications. Process Biochemistry, vol. 47, no. 4, p. 555–569, 2012. DOI https://doi.org/10.1016/j.procbio.2012.01.011. Available at: http://www.sciencedirect.com/science/article/pii/S135951131200027X.

KHAN, Faez Iqbal; LAN, Dongming; DURRANI, Rabia; HUAN, Weiqian; ZHAO, Zexin; WANG, Yonghua. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Frontiers in bioengineering and biotechnology, vol. 5, p. 16, 9 Mar. 2017. DOI 10.3389/fbioe.2017.00016. Available at: https://pubmed.ncbi.nlm.nih.gov/28337436.

KHARRAT, Nadia; ALI, Yassine Ben; MARZOUK, Sana; GARGOURI, Youssef Talel; KARRA-CHÂABOUNI, Maha. Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochemistry, vol. 46, no. 5, p. 1083–1089, 2011. https://doi.org/10.1016/j.procbio.2011.01.029.

KIM, Kyeong Kyu; SONG, Hyun Kyu; SHIN, Dong Hae; HWANG, Kwang Yeon; SUH, Se Won. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure, vol. 5, no. 2, p. 173–185, 1997. DOI https://doi.org/10.1016/S0969-2126(97)00177-9. Available at: http://www.sciencedirect.com/science/article/pii/S0969212697001779.

KOPP, Willian; SILVA, Felipe A; LIMA, Lionete N; MASUNAGA, Sueli H; TARDIOLI, Paulo W; GIORDANO, Roberto C; ARAÚJO-MOREIRA, Fernando M; GIORDANO, Raquel L C. Synthesis and characterization of robust magnetic carriers for bioprocess applications. Materials Science & Engineering B, vol. 193, p. 217–228, 2015. DOI 10.1016/j.mseb.2014.12.002. Available at: http://dx.doi.org/10.1016/j.mseb.2014.12.002.

KUMAR, Ashok; DHAR, Kartik; KANWAR, Shamsher Singh; ARORA, Pankaj Kumar. Lipase catalysis in organic solvents: Advantages and applications. Biological Procedures Online, vol. 18, no. 1, p. 1–11, 2016. DOI 10.1186/s12575-016-0033-2. Available at: http://dx.doi.org/10.1186/s12575-016-0033-2.

LI, Ying Xia; DONG, Bing Xue. Optimization of Lipase-Catalyzed Transesterification of Lard for Biodiesel Production Using Response Surface Methodology. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, vol. 59, no. December, p. 504–515, 2016. https://doi.org/10.1007/s12010-008-8377-y.

LIMA, Lionete N; OLIVEIRA, Gladson C; ROJAS, Mayerlenis J; CASTRO, Heizir F; TARDIOLI, Paulo W. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent free systems. 2015. https://doi.org/10.1007/s10295-015-1586-9.

LISBOA, M. C.; RODRIGUES, C. A.; BARBOSA, A. S.; MATTEDI, S.; FREITAS, L. S.; MENDES, A. A.; DARIVA, C.; FRANCESCHI, E.; LIMA, ÁS S.; SOARES, C. M.F. New perspectives on the modification of silica aerogel particles with ionic liquid used in lipase immobilization with platform in ethyl esters production. Process Biochemistry, vol. 75, no. June, p. 157–165, 2018. DOI 10.1016/j.procbio.2018.09.015. Available at: https://doi.org/10.1016/j.procbio.2018.09.015.

MACHADO, Natália B; MIGUEZ, João P; BOLINA, Iara C A; SALVIANO, Adriana B; GOMES, Raphael A B; TAVANO, Olga L; LUIZ, Jaine H H; TARDIOLI, Paulo W; CREN, Érika C; MENDES, Adriano A. Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme and Microbial Technology, vol. 128, p. 9–21, 2019. DOI https://doi.org/10.1016/j.enzmictec.2019.05.001. Available at: http://www.sciencedirect.com/science/article/pii/S0141022919300687.

MANOEL, Evelin A; JOSÉ, C S; FREIRE, Denise M G; RUEDA, Nazzoly; FERNANDEZ-LAFUENTE, Roberto. Enzyme and Microbial Technology Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. vol. 71, p. 53–57, 2015. .

MARTINS, Sílvia Rs; DOS SANTOS, Amanda; FRICKS, Aline T.; LIMA, Álvaro S.; MATTEDI, Silvana; SILVA, Daniel P.; SOARES, Cleide Mf; CABRERA-PADILLA, Rebeca Y. Protic ionic liquids influence on immobilization of Lipase Burkholderia cepacia on hybrid supports. Journal of Chemical Technology and Biotechnology, no. June, 2016. https://doi.org/10.1002/jctb.5044.

MATTE, Carla R.; BORDINHAÕ, Carolina; POPPE, Jakeline K.; RODRIGUES, Rafael C.; HERTZ, Plinho F.; AYUB, Marco A.Z. Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. Journal of Molecular Catalysis B: Enzymatic, vol. 127, p. 67–75, 2016. DOI 10.1016/j.molcatb.2016.02.016. Available at: http://dx.doi.org/10.1016/j.molcatb.2016.02.016.

MEERA, Kamal Mohamed Seeni; SANKAR, Rajavelu Murali; JAISANKAR, Sellamuthu N.; MANDAL, Asit Baran. Mesoporous and biocompatible surface active silica aerogel synthesis using choline formate ionic liquid. Colloids and Surfaces B: Biointerfaces, vol. 86, no. 2, p. 292–297, 2011. DOI 10.1016/j.colsurfb.2011.04.011. Available at: http://dx.doi.org/10.1016/j.colsurfb.2011.04.011.

MOHIDEM, Nur Atikah; BIN MAT, Hanapi. Catalytic activity and stability of laccase entrapped in sol-gel silica with additives. Journal of Sol-Gel Science and Technology, vol. 61, no. 1, p. 96–103, 2012. https://doi.org/10.1007/s10971-011-2596-3.

MOTA, Danyelle A; RAJAN, Devi; HEINZL, Giuditta C; OSÓRIO, Natália M; GOMINHO, Jorge; KRAUSE, Laiza C; SOARES, Cleide M F; NAMPOOTHIRI, K Madhavan; SUKUMARAN, Rajeev K; FERREIRA-DIAS, Suzana. Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. Bioresource Technology, vol. 307, p. 123223, 2020. DOI https://doi.org/10.1016/j.biortech.2020.123223. Available at: http://www.sciencedirect.com/science/article/pii/S0960852420304946.

NIKOLIĆ, Milan P; PAVLOVIĆ, Vladimir B; STANOJEVIĆ-NIKOLIĆ, Slobodanka; SRDIĆ, Vladimir V. Enzyme immobilization using two processing methods onto silica core-shell particles. Boletín de la Sociedad Española de Cerámica y Vidrio, 2020. DOI https://doi.org/10.1016/j.bsecv.2020.03.004. Available at: http://www.sciencedirect.com/science/article/pii/S0366317520300315.

PADILHA, Silva; CARLOS, José; SANTANA, Curvelo; ALEGRE, Ranulfo Monte; TAMBOURGI, Basile. Extraction of Lipase from Burkholderia cepacia by PEG / Phosphate ATPS and Its Biochemical Characterization. vol. 55, no. February, p. 7–19, 2012. .

PALOMO, Jose M; ORTIZ, Claudia; FUENTES, Manuel; FERNANDEZ-LORENTE, Gloria; GUISAN, Jose M; FERNANDEZ-LAFUENTE, Roberto. Use of immobilized lipases for lipase purification via specific lipase–lipase interactions. Journal of Chromatography A, vol. 1038, no. 1, p. 267–273, 2004. DOI https://doi.org/10.1016/j.chroma.2004.03.058. Available at: http://www.sciencedirect.com/science/article/pii/S002196730400528X.

PAULA, Ariela V; MOREIRA, Ana B R; BRAGA, Luciana P; LORENA, Escola De Engenharia De; PAULO, Universidade De São; SP, Lorena; BRUNO, Laura M. Comparação do desempenho da lipase de Candida rugosa imobilizada em suporte híbrido de polissiloxanopolivinilálcool empregando diferentes metodologias. Química Nova, vol. 31, no. 1, p. 35–40, 2008. .

PORTACCIO, M.; DELLA VENTURA, B.; MITA, D. G.; MANOLOVA, N.; STOILOVA, O.; RASHKOV, I.; LEPORE, M. FT-IR microscopy characterization of sol-gel layers prior and after glucose oxidase immobilization for biosensing applications. Journal of Sol-Gel Science and Technology, vol. 57, no. 2, p. 204–211, 2011. https://doi.org/10.1007/s10971-010-2343-1.

RODRÍGUEZ, Karen; MARTINEZ, Ronny; BERNAL, Claudia. Selective immobilization of Bacillus subtilis lipase A from cell culture supernatant: Improving catalytic performance and thermal resistance. Process Biochemistry, vol. 92, p. 214–223, 2020. DOI https://doi.org/10.1016/j.procbio.2020.01.013. Available at: http://www.sciencedirect.com/science/article/pii/S135951131930892X.

SANTANA, Lisboa Juliana; OLIVEIRA, Marçal Juliana; CARVALHO, Nayara Bezerra; OSÓRIO, Natalia Maria Ferreira de Melo; MATTEDI, Silvana; FREITAS, Lisiane dos Santos; CAVALCANTI, Eliane Bezerra; LIMA, Álvaro Silva; SOARES, Cleide Mara Faria. Analysis of the Performance of a Packed Bed Reactor To Production Ethyl Esters. Química Nova, vol. 41, no. 00, p. 891–898, 2018. .

SARNO, Maria; IULIANO, Mariagrazia; POLICHETTI, Massimiliano; CIAMBELLI, Paolo. High activity and selectivity immobilized lipase on Fe 3 O 4 nanoparticles for banana flavour synthesis. Process Biochemistry, vol. 56, p. 98–108, 2017. DOI 10.1016/j.procbio.2017.02.004. Available at: http://dx.doi.org/10.1016/j.procbio.2017.02.004.

SHELDON, Roger A.; VAN PELT, Sander. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., vol. 42, no. 15, p. 6223–6235, 2013. DOI 10.1039/C3CS60075K. Available at: http://xlink.rsc.org/?DOI=C3CS60075K.

SOARES, Cleide M F; DOS SANTOS, Onélia A; DE CASTRO, Heizir F; DE MORAES, Flavio F; ZANIN, Gisella M. Characterization of sol–gel encapsulated lipase using tetraethoxysilane as precursor. Journal of Molecular Catalysis B: Enzymatic, vol. 39, no. 1, p. 69–76, 2006. DOI https://doi.org/10.1016/j.molcatb.2006.01.005. Available at: http://www.sciencedirect.com/science/article/pii/S1381117706000233.

SOARES, Cleide M F; DOS SANTOS, Onélia A; OLIVO, José E; DE CASTRO, Heizir F; DE MORAES, Flavio F; ZANIN, Gisella M. Influence of the alkyl-substituted silane precursor on sol–gel encapsulated lipase activity. Journal of Molecular Catalysis B: Enzymatic, vol. 29, no. 1, p. 69–79, 2004. DOI https://doi.org/10.1016/j.molcatb.2004.02.014. Available at: http://www.sciencedirect.com/science/article/pii/S1381117704000773.

SOUZA, Ranyere Lucena; DE FARIA, Emanuelle Lima Pache; FIGUEIREDO, Renan Tavares; FREITAS, Lisiane dos Santos; IGLESIAS, Miguel; MATTEDI, Silvana; ZANIN, Gisella Maria; DOS SANTOS, Onélia Aparecida Andreo; COUTINHO, João A P; LIMA, Álvaro Silva; SOARES, Cleide Mara Faria. Protic ionic liquid as additive on lipase immobilization using silica sol–gel. Enzyme and Microbial Technology, vol. 52, no. 3, p. 141–150, 2013. DOI https://doi.org/10.1016/j.enzmictec.2012.12.007. Available at: http://www.sciencedirect.com/science/article/pii/S0141022912002074.

THANGARAJ, Baskar; JIA, Zhaohua; DAI, Lingmei; LIU, Dehua; DU, Wei. Effect of silica coating on Fe3O4 magnetic nanoparticles for lipase immobilization and their application for biodiesel production. Arabian Journal of Chemistry, vol. 12, no. 8, p. 4694–4706, 2019. DOI https://doi.org/10.1016/j.arabjc.2016.09.004. Available at: http://www.sciencedirect.com/science/article/pii/S1878535216301484.

ULRICH, Schörken; PETER, Kempers. Lipid biotechnology: Industrially relevant production processes. European Journal of Lipid Science and Technology, vol. 111, no. 7, p. 627–645, 17 Jul. 2009. DOI 10.1002/ejlt.200900057. Available at: https://doi.org/10.1002/ejlt.200900057.

VESCOVI, Vinicius; DOS SANTOS, Jéssica Bravin Carmello; TARDIOLI, Paulo Waldir. Porcine pancreatic lipase hydrophobically adsorbed on octyl-silica: A robust biocatalyst for syntheses of xylose fatty acid esters. Biocatalysis and Biotransformation, vol. 35, no. 4, p. 298–305, 4 Jul. 2017. DOI 10.1080/10242422.2017.1335717. Available at: https://doi.org/10.1080/10242422.2017.1335717.

VESCOVI, Vinicius; GIORDANO, Raquel L C; MENDES, Adriano A; TARDIOLI, Paulo W. Immobilized Lipases on Functionalized Silica Particles as Potential Biocatalysts for the Synthesis of Fructose Oleate in an Organic Solvent / Water System. 2017. https://doi.org/10.3390/molecules22020212.

VESCOVI, Vinicius; KOPP, Willian; GUISÁN, José M; GIORDANO, Raquel L C; MENDES, Adriano A; TARDIOLI, Paulo W. Improved catalytic properties of Candida antarctica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino- glutaraldehyde spacer arms. Process Biochemistry, vol. 51, no. 12, p. 2055–2066, 2016. DOI https://doi.org/10.1016/j.procbio.2016.09.016. Available at: http://www.sciencedirect.com/science/article/pii/S1359511316304433.

WU, Sha; SONG, Lirong; SOMMERFELD, Milton; HU, Qiang; CHEN, Wei. Optimization of an effective method for the conversion of crude algal lipids into biodiesel. Fuel, vol. 197, p. 467–473, 2017. DOI https://doi.org/10.1016/j.fuel.2017.02.040. Available at: http://www.sciencedirect.com/science/article/pii/S0016236117301862.

ZHANG, Jianxu; SHI, Hui; WU, Di; XING, Zhen; ZHANG, Aijun; YANG, Yan; LI, Quanshun. Recent developments in lipase-catalyzed synthesis of polymeric materials. Process Biochemistry, vol. 49, no. 5, p. 797–806, 2014. DOI https://doi.org/10.1016/j.procbio.2014.02.006. Available at: http://www.sciencedirect.com/science/article/pii/S1359511314000804.

ZHAO, Xuebing; QI, Feng; YUAN, Chongli; DU, Wei; LIU, Dehua. Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renewable and Sustainable Energy Reviews, vol. 44, p. 182–197, 2015. DOI https://doi.org/10.1016/j.rser.2014.12.021. Available at: http://www.sciencedirect.com/science/article/pii/S1364032114010739.

ŽIVKOVIĆ, Lidija T; ŽIVKOVIĆ, Ljiljana S; BABIĆ, Biljana M; KOKUNEŠOSKI, Maja J; JOKIĆ, Bojan M; KARADŽIĆ, Ivanka M. Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochemical Engineering Journal, vol. 93, p. 73–83, 2015. DOI https://doi.org/10.1016/j.bej.2014.09.012. Available at: http://www.sciencedirect.com/science/article/pii/S1369703X14002794.




DOI: https://doi.org/10.34117/bjdv6n5-242

Refbacks

  • There are currently no refbacks.