The importance of software development for the monitoring of training to high competition / A importância do desenvolvimento de aplicativos para monitorização do treino de alta competição

Vasco Ponciano, Ivan Miguel Pires, Anita Fernandes, Valderi Leithardt


Atualmente, com o aumento da competitividade no esporte, a diferença entre atletas começou a diminuir cada vez mais. De segundos passamos para milésimos de diferença em uma corrida de 100 metros. Devido a esse problema, houve um crescimento generalizado do interesse em novas tecnologias e no desenvolvimento de soluções que permitam o monitoramento de condicionamento físico, monitoramento e controle de lesões e estabelecimento de metodologias de treinamento apropriadas individual e coletivamente. Este artigo pretende analisar o avanço tecnológico nessa área, analisar as principais características que os dispositivos tecnológicos voltados para esta área apresentam e, finalmente, apresentar as vantagens do uso de tais dispositivos em esportes de alta competição. Ao final, é possível verificar que a implementação de métodos de aprendizado de máquina para o monitoramento de diferentes atividades é essencial para o treinamento de alta competição. Ainda assim, é um assunto que pode ser explorado.


Palavras-chave: High competition athletes; Sport; Physical Analysis; Performance increase; sensors.


High competition athletes; Sport; Physical Analysis; Performance increase; sensors.

Full Text:



D. L. Wann, M. J. Melnick, G. W. Russell, and D. G. Pease, Sport fans: The psychology and social impact of spectators. New York, NY, US: Routledge, 2001.

D. A. James, “The application of inertial sensors in elite sports monitoring,” in The Engineering of Sport 6, vol. 3, Springer New York, 2006, pp. 289–294.

M. Suh, “Wearable sensors for athletes,” in Electronic Textiles: Smart Fabrics and Wearable Technology, Elsevier Ltd, 2015, pp. 257–273.

L. K. S. Sunna, “Athlete Monitoring via Wireless Sensor on a Mobile Phone,” 2011.

X. Yong, T. Bi, C. Bian, Q. Shen, and Q. Ma, “Design of the athlete’s electrocardiogram monitoring and evaluation system based on wireless sensor network,” in Proceedings - 2011 1st International Workshop on Complexity and Data Mining, IWCDM 2011, 2011, pp. 60–63, doi: 10.1109/IWCDM.2011.22.

A. Simpson, L. Gemming, D. Baker, and A. Braakhuis, “Do Image-Assisted Mobile Applications Improve Dietary Habits, Knowledge, and Behaviours in Elite Athletes? A Pilot Study,” Sports, vol. 5, no. 3, p. 60, Aug. 2017, doi: 10.3390/sports5030060.

“An increasing number of amateur athletes is a boon for Baton Rouge sports medicine professionals - Baton Rouge Business Report.” (accessed Apr. 04, 2020).

B. A. Jones, J. Arcelus, W. P. Bouman, and E. Haycraft, “Sport and Transgender People: A Systematic Review of the Literature Relating to Sport Participation and Competitive Sport Policies,” Sports Medicine, vol. 47, no. 4. Springer International Publishing, pp. 701–716, Apr. 01, 2017, doi: 10.1007/s40279-016-0621-y.

R. Dionigi, “Competitive sport as leisure in later life: Negotiations, discourse, and aging,” Leisure Sciences, vol. 28, no. 2, pp. 181–196, Mar. 2006, doi: 10.1080/01490400500484081.

S. Dixon, M. Batt, and A. Collop, “Artificial Playing Surfaces Research: A Review of Medical, Engineering and Biomechanical Aspects,” International Journal of Sports Medicine, vol. 20, no. 04, pp. 209–218, May 1999, doi: 10.1055/s-2007-971119.

S. L. Halson, “Monitoring Training Load to Understand Fatigue in Athletes,” Sports Medicine, vol. 44, no. 2. Springer International Publishing, pp. 139–147, Nov. 01, 2014, doi: 10.1007/s40279-014-0253-z.

J. L. Mayhew, C. D. Kerksick, D. Lentz, J. S. Ware, and D. L. Mayhew, “Using repetitions to fatigue to predict one-repetition maximum bench press in male high school athletes,” Pediatric Exercise Science, vol. 16, no. 3, pp. 265–276, Aug. 2004, doi: 10.1123/pes.16.3.265.

J. P. Ahtiainen and K. Häkkinen, “Strength Athletes Are Capable to Produce Greater Muscle Activation and Neural Fatigue During High-Intensity Resistance Exercise Than Nonathletes,” Journal of Strength and Conditioning Research, vol. 23, no. 4, pp. 1129–1134, Jul. 2009, doi: 10.1519/JSC.0b013e3181aa1b72.

A. E. Aubert, B. Seps, and F. Beckers, “Heart Rate Variability in Athletes,” Sports Medicine, vol. 33, no. 12. Springer, pp. 889–919, Sep. 04, 2003, doi: 10.2165/00007256-200333120-00003.

J. B. Morin and P. Samozino, “Interpreting power-force-velocity profiles for individualized and specific training,” International Journal of Sports Physiology and Performance, vol. 11, no. 2. Human Kinetics Publishers Inc., pp. 267–272, Mar. 01, 2016, doi: 10.1123/ijspp.2015-0638.

F. Pareja-Blanco et al., “Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations,” Scandinavian Journal of Medicine & Science in Sports, vol. 27, no. 7, pp. 724–735, Jul. 2017, doi: 10.1111/sms.12678.

F. L. de Koning, R. A. Binkhorst, J. A. Vos, and M. A. van ’t Hof, “The force-velocity relationship of arm flexion in untrained males and females and arm-trained athletes,” European Journal of Applied Physiology and Occupational Physiology, vol. 54, no. 1, pp. 89–94, May 1985, doi: 10.1007/BF00426305.

A. W. S. Watson, “Sports injuries: incidence, causes, prevention,” Physical Therapy Reviews, vol. 2, no. 3, pp. 135–151, Sep. 1997, doi: 10.1179/ptr.1997.2.3.135.

A. Umek, S. Tomažič, and A. Kos, “Autonomous wearable personal training system with real-time biofeedback and gesture user interface,” in Proceedings - 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2014, Mar. 2014, pp. 122–125, doi: 10.1109/IIKI.2014.32.

E. M. Kidman, M. J. A. D’Souza, and S. P. N. Singh, “A wearable device with inertial motion tracking and vibro-tactile feedback for aesthetic sport athletes Diving Coach Monitor,” in 2016, 10th International Conference on Signal Processing and Communication Systems, ICSPCS 2016 - Proceedings, 2016, doi: 10.1109/ICSPCS.2016.7843371.

A. Tóth and E. Lógó, “The Effect of Gamification in Sport Applications,” in 9th IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2018 - Proceedings, Feb. 2019, pp. 69–74, doi: 10.1109/CogInfoCom.2018.8639934.

F. Nurwanto, I. Ardiyanto, and S. Wibirama, “Light sport exercise detection based on smartwatch and smartphone using k-Nearest Neighbor and Dynamic Time Warping algorithm,” in Proceedings of 2016 8th International Conference on Information Technology and Electrical Engineering: Empowering Technology for Better Future, ICITEE 2016, Feb. 2017, doi: 10.1109/ICITEED.2016.7863299.

M. Ullah, H. Ullah, S. D. Khan, and F. A. Cheikh, “Stacked Lstm Network for Human Activity Recognition Using Smartphone Data,” in Proceedings - European Workshop on Visual Information Processing, EUVIP, Oct. 2019, vol. 2019-October, pp. 175–180, doi: 10.1109/EUVIP47703.2019.8946180.

R. Dhinesh, S. Preejith, and M. Sivaprakasam, “Ride Profiling for a Single Speed Bicycle Using an Inertial Sensor,” in Medical Measurements and Applications, MeMeA 2019 - Symposium Proceedings, Jun. 2019, doi: 10.1109/MeMeA.2019.8802138.

A. Ebert, M. Kiermeier, C. Marouane, and C. Linnhoff-Popien, “SensX: About sensing and assessment of complex human motion,” in Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control, ICNSC 2017, Aug. 2017, pp. 327–332, doi: 10.1109/ICNSC.2017.8000113.

M. Keally, G. Zhou, G. Xing, and J. Wu, “Remora: Sensing resource sharing among smartphone-based body sensor networks,” in IEEE International Workshop on Quality of Service, IWQoS, 2013, pp. 21–30, doi: 10.1109/IWQoS.2013.6550261.

A. Sbrollini et al., “Self-Monitoring of Cardiac Risk while Running Around Ancona,” in 2019 IEEE 23rd International Symposium on Consumer Technologies, ISCT 2019, Jun. 2019, pp. 1–4, doi: 10.1109/ISCE.2019.8901004.

G. Retscher and T. Hecht, “Investigation of location capabilities of four different smartphones for LBS navigation applications,” in 2012 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2012 - Conference Proceedings, 2012, doi: 10.1109/IPIN.2012.6418892.

D. Guida, A. Basukoski, and P. Database, “Weightbit: An Advancement in Wearable Technology,” in Proceedings - IEEE Symposium on Computer-Based Medical Systems, Nov. 2017, vol. 2017-June, pp. 672–677, doi: 10.1109/CBMS.2017.85.

S. Carneiro et al., “Accelerometer-based methods for energy expenditure using the smartphone,” in 2015 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2015 - Proceedings, Jun. 2015, pp. 151–156, doi: 10.1109/MeMeA.2015.7145190.

M. Matsumoto and K. Takano, “A Posture Detection System Using Consumer Wearable Sensors,” in Proceedings - 2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems, CISIS 2016, Dec. 2016, pp. 526–531, doi: 10.1109/CISIS.2016.137.

L. Bai, C. Efstratiou, and C. S. Ang, “WeSport: Utilising wrist-band sensing to detect player activities in basketball games,” in 2016 IEEE International Conference on Pervasive Computing and Communication Workshops, PerCom Workshops 2016, Apr. 2016, doi: 10.1109/PERCOMW.2016.7457167.

C. Ferreira, J. Madureira, and I. Sousa, “Protocol for Simulation of Falls in Watersports Activities,” in Proceedings - 7th International Conference on Computational Intelligence, Communication Systems and Networks, CICSyN 2015, Oct. 2015, pp. 109–112, doi: 10.1109/CICSyN.2015.29.

A. Ebert, M. T. Beck, A. Mattausch, L. Belzner, and C. Linnhoff-Popien, “Qualitative assessment of recurrent human motion,” in 25th European Signal Processing Conference, EUSIPCO 2017, Oct. 2017, vol. 2017-January, pp. 306–310, doi: 10.23919/EUSIPCO.2017.8081218.

H. P. Bruckner, W. Theimer, and H. Blume, “Real-time low latency movement sonification in stroke rehabilitation based on a mobile platform,” in Digest of Technical Papers - IEEE International Conference on Consumer Electronics, 2014, pp. 264–265, doi: 10.1109/ICCE.2014.6775997.

G. Wang et al., “Stretchable Optical Sensing Patch System Integrated Heart Rate, Pulse Oxygen Saturation, and Sweat pH Detection,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 4, pp. 1000–1005, Apr. 2019, doi: 10.1109/TBME.2018.2866151.

Y. Al Jeroudi, M. A. Ali, M. Latief, and R. Akmeliawati, “Online sequential extreme learning machine algorithm based human activity recognition using inertial data,” in 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015, Sep. 2015, doi: 10.1109/ASCC.2015.7244597.

D. Welsh and N. Roy, “Smartphone-based mobile gunshot detection,” in 2017 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2017, May 2017, pp. 244–249, doi: 10.1109/PERCOMW.2017.7917566.

J. Beecken and A. Reinhardt, “How Smooth is my Ride? Detecting Bikeway Conditions from Smartphone Video Streams,” in 2019 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2019, Mar. 2019, pp. 65–70, doi: 10.1109/PERCOMW.2019.8730869.



  • There are currently no refbacks.