Prebiotic skimmed UHT milk: advances in enzimatic conversion of lactose to galacto-oligosaccharides / Leite UHT numerado prebiotico: avanços na conversão enzimática de lactose a galacto-oligosacaridas

Priscila Barbosa Bezerra Nunes, Samara Alvachian Cardoso Andrade, Andrelina Maria Pinheiro Santos, Tania Maria Sarmento da Silva, Girliane Regina da Silva, Erilane de Castro Lima Machado

Abstract


Galacto-oligosaccharides (GOS) are oligosaccharides with prebiotic properties derived from lactose. The milk has a favorable pH for the action of the β-galactosidase enzyme produced by Kluyveromyces lactis and in this way may favor the hydrolysis of lactose and the synthesis of GOS. This work aimed to investigate the efficiency of the enzymatic conversion of lactose to GOS in skimmed UHT milk to obtain a dairy raw material with the presence of GOS and reduced lactose content. The best conditions of lactose and enzyme concentrations, and temperature, by enzymatic conversion of lactose, through surface response methodology following a 2³ experimental design (data not published), were investigated in reaction systems during the period of time inferior to that previously performed to favor reduced lactose content and the formation of GOS in skim milk. The carbohydrate analysis was performed by HPLC-IR (High Performance Liquid Chromatography- Refractive Index Detector). A skimmed dairy product was obtained with reduced lactose content (0.66% w/v) and GOS (0.96% w/v). The process was executed in 1.5 hours, at 30° C, with 10% lactose (w/v), and 5 U.mL-1 of enzyme. Once the process was controlled, it was possible to develop dairy products with prebiotics that feature health benefits.


Keywords


β-galactosidase, Kluyveromyces lactis, Transgalactosilation.

Full Text:

PDF

References


Adhikari, K.; Dooley, L. M.; Chambers, E.; Bhumiratana, N. (2010). Sensory characteristics of commercial lactose-free milks manufactured in the United States. LWT - Food Science and Technology, 43 (1), 113–118.

Ben, X.-M.; Li, J.; Feng, Z.-T.; Shi, S.-Y.; Lu, Y.-D.; Chen, R.; Zhou, X.-Y.; Xm, B.; Li, J.; Zt, F.; et al. (2008). Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World Journal of Gastroenterology, 14 (42), 6564–6568.

Frenzel, M.; Zerge, K.; Clawin-Rädecker, I.; Lorenzen, P. C. (2015). Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. LWT - Food Science and Technololy, 60, 1068–1071.

González, R.; Klaassens, E. S.; Malinen, E.; de Vos, W. M.; Vaughan, E. E. (2008). Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Applied and Environmental Microbioogy, 74 (15), 4686–4694.

González-Delgado, I.; López-Muñoz, M.-J.; Morales, G.; Segura, Y. (2016). Optimisation of the synthesis of high galacto-oligosaccharides (GOS) from lactose with β-galactosidase from Kluyveromyces lactis. International Dairy Journal, 61, 211–219.

Guerrero, C.; Vera, C.; Acevedo, F.; Illanes, A. (2015). Simultaneous synthesis of mixtures of lactulose and galacto-oligosaccharides and their selective fermentation. Journal of Biotechnology, 209, 31–40.

Guerrero, C.; Vera, C.; Illanes, A. (2013). Optimisation of synthesis of oligosaccharides derived from lactulose (fructosyl-galacto-oligosaccharides) with β-galactosidases of different origin. Food Chemistry, 138 (4), 2225–2232.

Hsu, C. A.; Lee, S. L.; Chou, C. . C. Enzymatic production of galactooligosaccharides by β-galactosidase from Bifidobacterium longum BCRC 15708. (2007). Journal of Agricultural and Food Chemistry, 55 (6), 2225–2230.

Iqbal, S.; Nguyen, T.-H.; Nguyen, T. T.; Maischberger, T.; Haltrich, D. (2010). β-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydrate Research, 345 (10), 1408–1416.

Lima, A. F.; Cavalcante, K. F.; de Freitas, M. de F. M.; Rodrigues, T. H. S.; Rocha, M. V. P.; Gonçalves, L. R. B. (2013). Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochemistry, 48 (3), 443–452.

Padilla, B.; Ruiz-Matute, A. I.; Belloch, C.; Cardelle-Cobas, A.; Corzo, N.; Manzanares, P. (2012). Evaluation of oligosaccharide synthesis from lactose and lactulose using β-galactosidases from kluyveromyces isolated from artisanal cheeses. Journal of Agricultural and Food Chemistry, 60, 5134–5141.

Palai, T.; Bhattacharya, P. K. (2013). Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. Journal of Bioscience and Bioengineering, 115 (6), 668–673.

Park, A.R.; Oh, D.K. (2010). Galacto-oligosaccharide production using microbial $β$-galactosidase: current state and perspectives. Appied. Microbioogy and. Biotechnology, 85 (5), 1279–1286.

Puri, M.; Gupta, S.; Pahuja, P.; Kaur, A.; Kanwar, J. R.; Kennedy, J. F. (2010). Cell Disruption Optimization and Covalent Immobilization of $β$-D-Galactosidase from Kluyveromyces marxianus YW-1 for Lactose Hydrolysis in Milk. Appied Biochemistry and Biotechnology, 160 (1), 98–108.

Rodriguez-Colinas, B.; Fernandez-Arrojo, L.; Ballesteros, A. O.; Plou, F. J. (2014). Galactooligosaccharides formation during enzymatic hydrolysis of lactose: Towards a prebiotic-enriched milk. Food Chemistry, 145, 388–394.

Rodriguez-Colinas, B.; Poveda, A.; Jimenez-Barbero, J.; Ballesteros, A. O.; Plou, F. J. (2012). Galacto-oligosaccharide Synthesis from Lactose Solution or Skim Milk Using the β-Galactosidase from Bacillus circulans. Journal of Agricultural and Food Chemistry, 60 (25), 6391–6398.

Ruiz-Matute, A. I.; Corzo-Martínez, M.; Montilla, A.; Olano, A.; Copovi, P.; Corzo, N. (2012). Presence of mono-, di- and galactooligosaccharides in commercial lactose-free UHT dairy products. Journal of Food Composition and Analysis, 28, 164–169.

Sangwan, V.; Tomar, S. K.; Singh, R. R. B.; Singh, A. K.; Ali, B. (2011). Galactooligosaccharides: Novel Components of Designer Foods. Journal of Food Science, 76 (4), R103-11.

Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W. (2011). Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry, 46 (8), 1565–1571.

Silveira, M. F.; Masson, L. M. P.; Martins, J. F. P.; Alvares, T. D. S.; Paschoalin, Virginia Margaret Flosi, L. D. L. T.; Conte-Junior, C. A. (2015). Simultaneous determination of lactulose and lactose in conserved milk by HPLC-RID. Journal of Chemistry, 6p.

StatSoft Inc. StatSoft Inc., Statistica: Data Analysis Software System, version 7. (2004).

Torres, D. P. M.; Gonçalves, M. do P. F.; Teixeira, J. A.; Rodrigues, L. R. (2010). Galacto-Oligosaccharides: Production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9, 438-454.

Urrutia, P.; Rodriguez-Colinas, B.; Fernandez-Arrojo, L.; Ballesteros, A. O.; Wilson, L.; Illanes, A.; Plou, F. J. (2013). Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Journal of Agricultural and Food Chemistry, 61 (5), 1081–1087.

Vera, C.; Guerrero, C.; Conejeros, R.; Illanes, A. (2012). Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme and Microbial Technology, 50 (3), 188–194.

Wooten, W. J (2010). Lactose Intolerance and Ethnic Prevalence. In Lactose Intolerance and Health (p. 49–52). National Institutes of Health: Kensington.




DOI: https://doi.org/10.34117/bjdv6n5-155

Refbacks

  • There are currently no refbacks.