Propriedades biológicas da levana de Bacillus subtilis natto e do óleo essencial de canela para aplicação em formulações cosmecêuticas / Biological properties of levan Bacillus subtilis natto and cinnamon essential oil for application in cosmeceutical formulations

Reginara Teixeira da Silva, Gabrielly Terassi Bersaneti, Roberta Torres Chideroli, Ulisses de Pádua Pereira, Audrey Alesandra Stinghen Garcia Lonni, Briani Gisele Bigotto, Maria Antonia Pedrine Colabone Celligoi

Abstract


A levana e o óleo essencial de canela são princípios ativos que apresentam grande potencial de aplicação em produtos cosméticos por serem moléculas naturais com propriedades biológicas relevantes. O objetivo desse trabalho foi avaliar as propriedades antioxidante, hidratante e antimicrobiana da levana de Bacillus subtilis natto e do óleo essencial de canela e desenvolver um cosmético multifuncional. As formulações cosmecêuticas foram desenvolvidas a base de ammonium acryloyldimethyltaurate/VP copolymer, contendo levana a 1 % e óleo de canela a 0.5 %, 1% e 2 %. Os ativos levana e o óleo de canela apresentaram atividade antioxidante máxima de 58 % e 21 % respectivamente na concentração de 1 % (10 mg mL-1). A levana demonstrou alta capacidade de hidratação de 92 % e o óleo essencial de canela com atividade antimicrobiana contra Staphylococcus aureus, Staphylococcus spp., Escherichia coli e Pseudomonas aeruginosa. A incorporação de 1% de levana nas formulações garantiu as atividades antioxidante e hidratante e com a associação do óleo de canela acrescentou atividade antimicrobiana. As formulações cosmecêuticas mostraram boa estabilidade por 15 dias, sendo assim a associação da levana e do óleo de canela resultou em um cosmético multifuncional.


Keywords


Levana; Cosméticos; Antioxidante; Antimicrobiano; Óleo De Canela.

References


Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, v.45, p.493-496, 1966.

Bersaneti, G. T.; Mantovan, J.; Magri, A.; Mali, S.; Celligoi, M. A. P. C. Edible films based on cassava starch and fructooligosaccharides produced by Bacillus subtilis natto CCT 7712. Carbohydrate Polymers, v.151, p.1132–1138, 2016.

Bersaneti, G. T.; Pan, N. C.; Baldo, C.; Celligoi, M. A. P. C. Co-production of Fructooligosaccharides and Levan by Levansucrase from Bacillus subtilis natto with Potential Application in the Food Industry. Applied Biochemistry and Biotechnology, v.184, p.838-851, 2017.

Brasil, Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Guia de estabilidade de produtos cosméticos. 1. ed. v. 1, 52 p. Brasília, 2004.

Celligoi, M. A. P. P.; Lonni, A. A. S. G.; Bersaneti, G. T.; Helenas, J. K.; Suwa, R. E.; Andrade, I. P. Biocosmético facial com propriedades antioxidantes pela adição de levana produzida pela levanasacarase de uma espécie de Bacillus. Patente, BR102018069609, 2018.

CLSI (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Disponível em: http://antimicrobianos.com.ar/ATB/wp-content/uploads/2012/11/03-CLSI-M07-A9-2012.pdf. Acesso em: 14 de junho de 2019.

Chi, Y.; Ye, H.; Li, H.; Li, Y.; Guan, H.; Mou, H.; Wang, P. Structure and molecular morphology of a novel moisturizing exopolysaccharide produced by Phyllobacterium sp. 921F. International Journal of Biological Macromolecules, v.135, p.998-1005, 2019.

Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, Yang, J. S.; McClements, D. J.; McLandsborough, L. Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method. LWT - Food Science and Technology, v.110, p.190-196, 2019.

Domżał-Kędzia, M.; LewińskA, A.; Jaromin, A.; Weselski, M.; Pluskota, R.; Łukaszewicz, M. Fermentation parameters and conditions affecting levan production and its potential applications in cosmetics. Bioorganic Chemistry, 2019.

El amrani, S., El Ouali Lalami, A., Ez zoubi, Y., El Moukhafi, K., Bouslmati, R., & Lairini, S. Evaluation of antibacterial and antioxidant effects of cinnamon and clove essential oils from Madagascar. Materials Today: Proceedings, v.13, p.762–770, 2019.

Furukawa, M.; Tsuboi, T. Beautifully whitening agent. Japanese patent 2006052146, 2006. Disponível em:https://worldwide.espacenet.com/patent/search/family/036029848/publication/

JP2006052146A?q=Beautifully%20whitening%20agent%20levan. Acesso em: 24 de julho de 2019.

Garbossa, W.A.C.; Maia Campos, P.M.B.G. Euterpe oleracea, Matricaria chamomilla, and Camellia sinensis as promising ingredients for development of skin care formulations. Industrial Crops and Products, v.83, p.1-10, 2016.

Hamdy, A. A.; Elattal, N. A.; Amin, M. A.; Ali, A. E. Mansour, N. M.; Awad, G. E. A.; Awad, H. M.; Esawy, M. A. Possible correlation between levansucrase production and probiotic activity of Bacillus sp. isolated from honey and honey bee. World Journal of Microbiology and Biotechnology, p.33-69, 2017. (A)

Hamdy, A. A.; Elattal, N. A.; Amin, M. A.; Ali, A. E. Mansour, N. M.; Awad, G. E. A.; Farrag, A. R. H.; Esawy, M. A. In vivo assessment of possible probiotic properties of Bacillus subtilis and prebiotic properties of levan. Biocatalysis and Agricultural Biotechnology, v.13, p.190-197, 2017. (B)

Herman, A.; Herman, A. P.; Domagalska, B. W.; Młynarczyk, A. Essential Oils and Herbal Extracts as Antimicrobial Agents in Cosmetic Emulsion. Indian Journal of Microbiology, v.53, p.232–237, 2013.

Jurgelane, I.; Sevjakova, S.; Szene L. Influence on illitic clay addition on the stability of sunflower oil in water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.529, p.178-184, 2017.

Kim, K.; Kim, K.; Ryo, O.; Lee, T.; Kim, T. Cosmetic composition containing levan having cell proliferation, skin-moisturizing and irritation-alleviating effects. Japanese Patent 2003277225, 2003. Disponível em: https://patents.google.com/patent/JP2003277225A/en. Acesso em: 18 de julho de 2019.

Lacatusu, I.; Arsenie, L. V.; Badea, G.; Popa, O.; Oprea, O.; Badea, N. New cosmetic formulations with broad photoprotective and antioxidative activities designed by amaranth and pumpkin seed oils nanocarriers. Industrial Crops and Products, v.123, p.424–433, 2018.

Liu, J.; Luo, J.; Ye, H.; Zeng, X. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food and Chemical Toxicology, v.50, p.767-772, 2012.

Moarefian, M.; Barzegar, M.; Sattari, M. Cinnamomum zeylanicum essential oil as a natural antioxidant and antibacterial in cooked sausage. Journal of Food Biochemistry, v.37, p.62-69, 2011.

Morone, J., Alfeus, A., Vasconcelos, V., Martins, R. (2019). Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach. Algal Research, v.41, p.1-9, 2019.

Nabavi, S. F., Di Lorenzo, A., Izadi, M., Sobarzo-Sanchez, E., Daglia, M., Nabavi, S. M. Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients, v.7, p.7729–7748, 2015.

Ni, S., Han, F., Wang, W., Han, D., Bao, Y., Han, D., Wang, H. Niu, L. Innovations upon antioxidant capacity evaluation for cosmetics: A photoelectrochemical sensor exploitation based on N-doped graphene/TiO 2 nanocomposite. Sensors and Actuators B: Chemical, v.259, p.963–971, 2018.

Nurdjannah, N.; Bermawie, N. Cloves. Indonesian Agency for Agriculture Research and Development (IAARD), Indonesia, p.197-215, 2012.

Pandey, A.; Jagtap, J. V.; Polshettiwar, S. A. Formulation and evaluation of in¬vitro antimicrobial activity of gel containing essential oils and effect of polymer on their antimicrobial activity. International Journal of Pharmacy and Pharmaceutical Sciences, v.3, p.234-237, 2011.

Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrasonics Sonochemistry. v.60, 2019.

Ribeiro-Santos, R.; Andrade, M.; Madella, D.; Martinazzo, A. P.; Moura, de A. G. M. L.; de Melo, N. R.; Sanches-Silva, A. Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends in Food Science & Technology, v.62, p.154–169, 2017.

Shi, X. L.; Zhang, J. J.; Song, H. F.; Wang, J. J.; Zhang, Z. S; Zhang, Q. B. Polysaccharides from Enteromorpha linza: Purification and moisture-preserving activity. Marine Science, v. 37, p.81–85, 2010.

Srikanth, R.; Siddartha, G.; Sundhar Reddy, C. H. S. S.; Harish, B.S.; Janaki Ramaiah, M.; Uppuluri, K. B. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydrate Polymers, v.123, p.8-16, 2015.

Spagnol, C. M.; Assis, R. P.; Brunetti, I. L.; Isaac, V. L. B.; Salgado, H. R. N.; Corrêa, M. A. In vitro methods to determine the antioxidant activity of caffeic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v.219, p.358-366, 2019.

Subki, S.Y.M.; Jamal, J.A.; Husain, K.; Manshoor, N. Characterisation of leaf essential oils of three Cinnamomum species from Malaysia by gas chromatography and multivariate data analysis. Pharmacognosy Journal, v.5, p.22-29, 2013.

Taylan, O.; Yilmaz, M. T.; Dertli, E. Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal of Biological Macromolecules, v.136, p.436-444, 2019.

Thormar H. Antibacterial and antifungal activities of essential oils. In: Lipids and essential oils as antimicrobial agents. Wiley, Chichester, p.256–293, 2011.

Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S. M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: physical, mechanical, structural and antimicrobial attributes. Colloids and Surfaces B: Biointerfaces, 2019.

Viikari, L., Gisler, R. By-products in the fermentation of sucrose by different Zymomonas strains. Applied Microbiol Biotechnology, v. 23, p. 240–244, 1986.

Wang, J.; Lia, Y.; Gao, Y.; Xie, Z.; Zhou, M.; He, Y.; Wu, H.; Zhou, W.; Dong, X.; Yang, Z.; Hu, Y. Cinnamon oil-loaded composite emulsion hydrogels with antibacterial activity prepared using concentrated emulsion templates. Industrial Crops and Products, v.112, p.281-289, 2018.

Xu, T.; Gao, C.; Feng, X.; Huang, M.; Yang, Y.; Shen, X.; tang, X. Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films. Carbohydrate Polymers, v.217, p.116-125, 2019.

Zhang, Z.; Wang, X.; Han, Z.; Zhao, M.; Yin, L. Purification, antioxidant and moisture-preserving activities of polysaccharides from papaya. Carbohydrate Polymers, v. 87, p. 2332–2337, 2012.

Zhang, Y., Liu, X., Wang, Y., Jiang, P., Quek, S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, v.59, p.282–289, 2016.

Zhao, L.; Fan, F.; Wang, P.; Jiang, X. Culture medium optimization of a new bacterial extracellular polysaccharide with excellent moisture retention activity. Biotechnological products and process engineering, v. 87, p.2841–2850, 2013.




DOI: https://doi.org/10.34117/bjdv6n5-015

Refbacks

  • There are currently no refbacks.