Residual 2,4-D in plant tissue culture discarded media: a neglected source of environmental pollution / 2,4-D residual em meios descartados para cultura de tecidos de plantas: uma fonte negligenciada de poluição ambiental

Dora dos Santos Costa, Carla Caroline Amaral da Silva, Antonio Jorge Ribeiro da Silva, Norma Albarello, Ida Carolina Neves Direito, Cristiane Pimentel Victório

Abstract


The herbicide 2,4-D (2,4-dichlorophenoxyacetic acid) is a plant growth regulator for callus induction and somatic embryogenesis in tissue culture protocols. Research has shown that exposure to 2,4-D causes a number of environmental and health problems. Routine laboratory work involves the use of 2,4-D in the preparation of culture media, thus generating culture media with 2,4-D residues, the disposal of which is often improper. Therefore, this study aimed to determine the residual content of 2,4-D in MS (Murashige and Skoog), agrowth medium used in plant tissue cultures, after callus development. MS media were used from callus cultures of bananeira (Musa sp.) and basil (Ocimum basilicum L.). Callus cultures were supplemented with 2,4-D at concentrations of 1.0 and 0.5 mg.L-1, respectively. MS media were also evaluated in the absence of plant culture at the 0.2; 0.5 and 1.0 mg.L-1 concentrations of 2,4-D under light and dark conditions for a period of one month. Banana callus cultures consumed about 79% ± 0.27% of 2,4-D in the culture medium after two months. After three months of culture, it was not possible to detect 2,4-D in basil callus culture since the values found were below the detection limit (LOD ≤ 0.096 mg.L-1). Light does not appear to influence the degradation of 2,4-D in the culture medium. Results suggest that the concentration of 2,4-D residues depends on the species cultured. Improper disposal of these media might be a source of ignored and, hence, environmental contamination, depending on 2,4-D concentration and volume of media waste.


Keywords


2,4-D; Chemical residue; Plant tissue culture; Chemical pollution; Phytorregulator

Full Text:

PDF

References


ANVISA- AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. Parecer Técnico de Reavaliação Nº 07, de 2015/GGTOX/ANVISA. Reavalia os riscos à saúde humana do ingrediente ativo ácido 2,4-diclorofenoxiacético (2,4-D). Available in:< http://portal.anvisa.gov.br/ >Access in: June, 06th,2019.

ALVAREZ M, LÓPEZ T, ODRIOZOLA JA, CENTENO MA, DOMÍNGUEZ MI, MONTES M, GONZÁLEZ RD. 2007. 2,4-Dichlorophenoxyacetic acid (2,4-D) photodegradation using an Mn+/ZrO2photocatalyst: XPS, UV–vis, XRD characterization. Appl Catal B 73: 34–41.

AYRES M, AYRES JR M, AYRES DL, SANTOS AA. 2007. Bioestat 5.0 aplicações estatísticas nas áreas das ciências biológicas e médicas. Belém: IDSM, 364p.

BEARD JD, ENGEL LS, RICHARDSON DB, GAMMON MD, BAIRD C, UMBACH DM, ALLEN KD, STANWYCK CL, KELLER J, SANDLER DP, SCHMIDT S, KAMEL F. 2017. Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis survival. Plos One 12:1-22.

BEYL CA. 1999. Plant Tissue culture concepts and laboratory exercises. In: TRIGIANO RN, GRAY DI (Eds.). Plant tissue culture concepts and laboratory exercises. Boca Raton: CRC, p. 21-38.

BIAN X, CHEN J, JI R. 2013. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic material of tourmaline-coated TiO2 nanoparticles: kinetic study and model. Materials 6:1530-1542.

BOIX YF, ARRUDA RCO, DEFAVERI ACA, SATO A, LAGE CLS, VICTÓRIO CP. 2013. Callus in Rosmarinus officinalis L. (Lamiaceae): a morphoanatomical, histochemical and volatile analysis. Plant Biosyst 147: 751-757.

BURNS CJ, SWAEN GMH. 2012. Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology. Crit Rev Toxicol 42: 768-786.

CARNEIRO FF, AUGUSTO LGS, RIGOTTO RM, FRIEDRICH K, BÚRIGO AC. (Org.). Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde. 2015. Rio de Janeiro: EPSJV; São Paulo: Expressão Popular, 624 p.

CARVALHO ACPP, RODRIGUES AAJ, SANTOS ED. 2016. Documentos 157. Panorama da produção de mudas micropropagadas no Brasil (2008-2015). Fortaleza: Embrapa Agroindústria Tropical, 36p.

CHEN X, ZHANG H, WAN Y, LI Y. 2018. Determination of 2,4-Dichlorofenoxiacetic acid (2,4-D) in rat serum for pharmacokinetic studies with a simple HPLC method. Plos One 13: 1-10.

CONGER BV. 2018. Cloning agricultural plants via in vitro techniques. Boca Raton: CRS Press, 280p.

COSTA DS. 2018. Ensaios de avaliação da remediação de resíduos de 2,4-D em meios de cultura de tecidos vegetais. Dissertação (Mestrado), Programa de Pós-graduação em em Ciência e Tecnologia Ambiental) - Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, 2018, 134p.

DIAS MI, SOUSA MJ, ALVES RC, FERREIRA ICFR. 2016. Explorating plant tissue culture to improve the production of phenolic compounds: A review. Ind Crop Prod 82: 9-22.

DOPICO M, GÓMEZ A. 2015. Review of the current state and main sources of dioxins around the world. J Air Waste Manage 65: 1033-1049.

EPA – United States Environmental Protection Agency. 2018 Edition of the Drinking Water Standards and Health Advisories Tables.Avaiable in: https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf> Access: August, 13th, 2019.

FARHADI N, PANAHANDEH J, AZAR AM, SALTE SA. 2017. Effects of explant type, growth regulators and light intensity on callus induction and plant regeneration in four ecotypes of Persian shallot (Allium hirtifolium). Sci Hortic 218: 80-86.

GARABRANT DH, PHILBERT MA. 2002. Review of 2,4-Dichlorophenoxyacetic acid (2,4-D) epidemiology and toxicology. Crit Rev Toxicol 32: 233–257.

IGBINOSA EO, ODJADJARE EE, CHIGOR VN, IGBINOSA IH, EMOGHENE AO, EKHAISE FO, IGIEHON NO, IDEMUDIA OG. 2013, Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci World J 2013: 1-11.

IKEUCHI M, SUGIMOTO K, IWASE A. 2013. Plant callus: mechanisms of induction and repression. Plant Cell 25: 3159-3173.

JEFFRIES MD, GANNON TW, BROSNAN JT, BREEDEN GK. 2016. Comparing dislodgeable 2,4-D residues across athletic field turfgrassspecies and time. Plos One 11: 1-13.

KABIR A, ZENDEHDEL R, TAYEFEH-RAHIMIAN R. 2018. Dioxin exposure in the manufacture of pesticide production as a risk factor for death from prostate cancer: A meta-analysis. Iran J Public Health 47: 148-155.

MANTILLA A, TZOMPANTZI F, FERNÁNDEZ JL, DÍAZ GÓNGORA JAI, MENDOZA G, GÓMEZ R. 2009. Photodegradation of 2,4-dichlorophenoxyacetic acid using znalfe layered double hydroxides as photocatalysts. Catal Today 148:119–123.

MEKKY H, AL-SABAHI J, ABDEL-KREEM MFM. 2018. Potentiating biosynthesis of the anticancer alkaloids vincristine and vinblastine in callus cultures of Catharanthus roseus. S Afr J Bot 114: 29-31.

MEYER TM, SCRIBNER EA. 2009. The evolution of analytical technology and its impact on water-quality studies for selected herbicides and their degradation products in water. In: AHUJA S (Ed.). Handbook of Water Purity and Quality. Amsterdam: Academic Press, p. 289-313.

MMA - MINISTÉRIO DO MEIO AMBIENTE. Resolução N˚ 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Avaiable in: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf >Acess in: July, 16th. 2016.

MURASHIGE T, SKOOG F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15: 473-497.

NARAYANI M, CHADHA A, SRIVASTAVA S. 2017. Callus and cell suspension culture of Viola odorata as in vitro production platforms of known and novel cyclotides. Plant Cell Tiss Org 130: 289–299.

NPIC- Nacional Pesticide Information Center. 2,4-D. Avaiable in:Acess in: October, 14th. 2018.

PARRAY J, KAMILI AN, JAN S, MIR MY, SHAMEEM N, GANAI BA, ABD_ALLAH EF, HASHEM A, ALQARAWI AA. 2018. Manipulation of plant growth regulators on phytochemical constituents and DNA protection potential of the medicinal plant Arnebiabenthamii. Biomed Res Int 2018: p. 1-8.

POCHETTINO AA, HAPON MB, BIOLATTO SM, MADARIAGA MJ, JAHN GA, KONJUH CN. 2016. Effects of 2,4-dichlorophenoxyacetic acid on the ventral prostate of rats during the peri-pubertal, pubertal and adult stage. Drug Chem Toxicol 39: 392-399.

PRATAP A, PRAJAPATI U, SINGH CM, GUPTA S, RATHORE M, MALVIYA N, TOMART R, GUPTA AK, TRIPATHI S, SINGH NP. 2018. Potential, constraints and applications of in vitro methods improving grain legumes. Plant Breeding 137: 235-249.

SILVA AF, SOARES TRS, AFONSO JC. 2010. Gestão de resíduos de laboratório: Uma abordagem para o ensino médio. Química Nova na Escola 32: 37-42.

SIMÕES C, BIZARRI CHB, CORDEIRO LS, CASTRO TC, COUTADA LCM, SILVA AJR, ALBARELLO N, MANSUR E. 2009. Anthocyanin production in callus cultures of Cleome rosea: modulation by culture conditions and characterization of pigments by means of HPLC-DAD/ESIMS. Plant Physiol Bioch 47: 895-903.

SKIBA E, KOBYŁECKA J, WOLF WM. 2017. Influence of 2,4-D and MCPA herbicides on uptake and translocation of heavy metals in wheat (Triticum aestivum L.). Environ Pollut 220: 2017.

SONG Y. 2014. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56: 106-113.

SURA S, WAISER M, TUMBER V, FARENHORST A. 2012. Effects of herbicide mixture on microbial communities in prairie wetland ecosystems: a whole wetland approach. Sci of Total Environ 435-436: 34-43.

VICTÓRIO CP, HENRIQUES AB, TAVARES ES, ESQUIBEL MA, LAGE CLS. 2010. Standardized production of Phyllanthus tenellus Roxb. by plant tissue culture. Rev Ciênc Agron 41: 272-278.

VON STACKELBERG K. 2013. A systematic review of carcinogenic outcomes and potential mechanisms from exposure to 2,4-D and MCPA in the environment. J Toxicol 2013: 1-53.

WÓJCIKOWSKA B, GAJ MD. 2017. Expression profiling of auxin response factor genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Rep 36: 843-858.

YU C, WANG H, LIU X, QUAN X, CHEN S, ZHANG J, ZHANG P. 2014. Photodegradation of 2,4-D induced by NO2− in aqueous solutions: The role of NO2. J Environ Sci 26: 1383–1387.

ZHANG M, BUEKENS A, LI X. 2017. Dioxins from biomass combustion: an overview. Waste Biomass Valori 8: 1-20.




DOI: https://doi.org/10.34117/bjdv6n5-457

Refbacks

  • There are currently no refbacks.