Hidroxicloroquina como alternativa para o tratamento da infecção causada pelo SARS-CoV-2: O que se sabe até agora? / Hydroxychloroquine as an alternative for the treatment of infection caused by SARS-CoV-2: What is known so far?

Jaqueline Barbosa de Souza, Sandrelli Meridiana de Fátima Ramos dos Santos Medeiros, Iago Dillion Lima Cavalcanti, Davi de Lacerda Coriolano, José Cleberson Santos Soares, Fábio Henrique Portella Corrêa de Oliveira

Abstract


A síndrome respiratória aguda grave causada pelo coronavírus 2 (SARS-CoV-2) tem alertado a população para as elevadas taxas de morbidade e mortalidade, levando a  Organização Mundial de Saúde (OMS) a declarar emergência de saúde pública em 2020. Nesse cenário, pesquisas estão sendo amplamente realizadas na busca de tratamentos eficazes contra a infecção. Dentre estes, antivirais têm sido testados, a exemplo da hidroxicloroquina (HCQ), que tem apresentado resultados de interesse na redução da carga viral. Nesse sentido, o objetivo deste trabalho é descrever o potencial da HCQ frente à infecção por SARS-CoV-2 descrito na literatura.  A HCQ consegue reduzir a carga viral impedindo a entrada do coronavírus na célula hospedeira. No entanto, esses resultados não garantem a sua utilização devido à necessidade de maiores estudos que comprovam a eficácia clínica e segurança na administração da HCQ em pacientes com COVID-19.


Keywords


SARS-CoV-2, COVID-19, Hidroxicloroquina, Propriedades antivirais.

References


ABDULAZIZ, N.; SHAH, A. R.; MCCUNE, W. J. Hydroxychloroquine: balancing the need to maintain therapeutic levels with ocular safety: an update. Clinical Therapeutics, v. 30, n.3, p. 249-255, 2018.

BANSAL, M. Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020.

BEN-ZVI, I.; KIVITY, S.; LANGEVITZ, P.; SHOENFELD, Y. Hydroxychloroquine: from malaria to autoimmunity. Clinical Reviews in Allergy & Immunology, v. 42, n. 2, p. 145-153, 2012.

BHUSHAN, P.; AGGARWAL, A.; BALIYAN, V. Complete clearance of cutaneous warts with hydroxychloroquine: Antiviral action?. Indian Journal of Dermatology, v. 59, n. 2, p. 211, 2014.

BOGACZEWICZ, A.; SOBÓW, T. Psychiatric adverse effects of chloroquine. Psychiatria i Psychologia Kliniczna, v. 17, n. 2, p. 111-114, 2017.

BRASIL. Ministério da Saúde. Doença pelo Coronavírus 2019. Boletim Epidemiológico 12 – COE COVID-19 – 19 de abril de 2020. Disponível em: https://portalarquivos.saude.gov.br/images/pdf/2020/April/19/BE12-Boletim-do-COE.pdf Acesso em: 19/04/2020.

BROWNING, D. J. Pharmacology of Chloroquine and Hydroxychloroquine. In: Hydroxychloroquine and Chloroquine Retinopathy. Springer, New York, 2014. P. 35-63.

CALY, L. et al. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, p. 104787, 2020.

CANSU, D. U.; KORKMAZ, C. Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for RA. Rheumatology, v. 47, n. 3, p. 378-379, 2008.

CHATRE, C. et al. Hydroxichloroquine: A Systematic Review of the Literature. Drug Saf, v. 41, n. 10, p. 919-931, 2018.

CHIANG, E.; JAMPOL L. M.; FAWZI. Retinal toxicity found in a patient with systemic lupus erythematosus pior to 5 years of treatment with hydroxychloroquine. Rheumatology (Oxford), v. 53, n. 11, p. 2001-2001, 2014.

CHOY, K. T. et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research, p. 104786, 2020.

CHU, H. et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clinical Infectious Diseases, 2020.

CUI, J; LI, F; SHI, Z. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, v. 17, n. 3, p. 181-192, 2019.

CHANNAPPANAVAR, R. et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe, v. 19, n. 2, p. 181-193, 2016.

CHONG, P. Y. et al. Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis. Archives of Pathology & Laboratory Medicine, v.128, n.2, p.195-204, 2004.

DEVAUX, C. A. et al. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. International journal of antimicrobial agents, p. 105938, 2020.

ELFIKY, ABDO A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, p. 117592, 2020.

GAUTRET, P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, p. 105949, 2020.

GIANFRANCESCO, M. A. et al. Hydroxychloroquine dosing in immune-mediated diseases: implications for patient safety. Rheumatology International, v. 37, n. 10, p. 1611-1618, 2017.

JEON, S. et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. bioRxiv, 2020.

LIPSITCH, M.; SWERDLOW, D. L.; FINELLI, L. Defining the epidemiology of Covid-19—studies needed. New England Journal of Medicine, 2020.

KIM, J. M. et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health and Research Perspectives, v. 11, n. 1, p. 3, 2020.

KUMAR, A. et al. Hydroxychloroquine inhibits Zika virus NS2B-NS3 protease. ACS Omega, v. 3, n. 12, p. 18132-18141, 2018.

LAI, CHIH-CHENG et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents, p. 105924, 2020.

LAKKIREDDY, D. R. et al. Guidance for Cardiac Electrophysiology During the Coronavirus (COVID-19) Pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Heart Rhythm, 2020.

LI, Z. et al. Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. Journal of Medical Virology, 2020.

LIU, J. et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, v. 6, n. 1, p. 1-4, 2020.

MADJID, M.; NAEINI, P. S.; SOLOMON, S. D. Potential effects of coronaviruses on the cardiovascular system a review. JAMA Cardiology, 2020.

MARDONES, P. S. et al. Hypoglycemina due to hydroxychloroquine, an uncommon association but to keep in mind, case report and review of literature. Journal of Diabetes, Metabolic Disorders & Control, v. 7, n. 1, p. 6-7, 2020.

MARMOR, M. F. et al. Recommendations on Screening for Chloroquine and Hydroxychloroquine retinopathy(2016 version).Ophthalmology, v. 123, n. 6, p. 1386-1394, 2016.

MELLES, R. B.; MARMOR, M. F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmology, v. 132, n. 12, p. 1453-1460, 2014..

MCDUFFIE, F. C. Bone marrow depression after drug therapy in patients with systemic lupus erythematosus. Annals of the Rheumatic Diseases, v. 24, n. 3, p. 289-292, 1965.

ORNSTEIN, M. H.; SPERBER, K. The antiinflammatory and antiviral effects of hydroxychloroquine in two patients with acquired immunodeficiency syndrome and active inflammatory arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, v. 39, n. 1, p. 157-161, 1996.

PANDYA, H. K. et al. Hydroxychloroquine retinopathy: a review of imaging. Indian Journal of Ophthalmology, v. 63, n. 7, p. 570-574, 2015.

PEIRIS, J. S. M. et al. Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, v. 361, n. 9366, p. 1319-1325, 2003a.

PEIRIS, J. S. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. The Lancet, v.361, n.9371, p.1767-1772, 2003b.

PONTICELLI, C.; MORONI, G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opinion on Drug Safety, v. 16, n. 3, p. 411–419, 2016.

RODRÍGUEZ-HURATDO, F. J.; SÁEZ-MORENO, J. A.; RODRÍGUEZ-FERRER, J. M. Toxicidad ocular y recuperación visual funcional en una paciente tratada con hidroxicloroquina. Reumatología Clínica, v. 11, n. 3, p. 170-173, 2015.

ROTHAN, H. A.; BYRAREDDY, S. N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, p. 102433, 2020.

RUIZ-IRASTORZA, G. et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Annals of the Rheumatic Diseases, v. 69, n. 1, p. 20-28, 2010.

SAMES, E.; PATERSON, H.; LI, C. Hydroxychloroquine-induced agranulocytosis in a patient with long-term rheumatoid arthritis. European Journal of Rheumatology, v. 3, n. 2, p. 91-92, 2016.

SANDERS, J. M.; MONOGUE, M. L.; JODLOWSKI, T. Z. Pharmacologic treatments for coronavirus disease 2019 (COVID-19) a review. JAMA, 2020.

SAVARINO, A. et al. Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet Infectious Diseases, v. 3, n. 11, p. 722-727, 2003.

SHEIKHBAHAIE, F. et al. The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition. Advanced Biomedical Research, v. 5, p. 145, 2016.

SHIPPEY, E. A.; WAGLER, V. D.; COLLAMER, A. N. Hydroxychloroquine: an old drug with new relevance. Cleveland Clinic Journal of Medicine, v. 85, n. 6, p. 459-467, 2018.

SHU, C. et al. Exploring Potential Super Infection in SARS-CoV2 by Genome-Wide Analysis and Receptor–Ligand Docking. 2020.

SINGH, A. K. et al. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: a systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020.

SIMMONS, G. et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences, v. 101, n. 12, p. 4240-4245, 2004.

SHEIKHBAHAIE, F. et al. The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition. Advanced Biomedical Research, v. 5, p. 145, 2016.

SHOJANIA, K.; KOEHLER, B. E.; ELLIOTT, T. Hypoglycemia induced by hydroxychloroquine in a type II diabetic treated for polyarthritis. The Journal of Rheumatology, v. 26, n. 1, p. 195-196, 1999.

SOHRABI, C. et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 2020.

TAHERIAN E. et al. The biological and clinical activity of anti-malarial drugs in autoimmune disorders. Current Rheumatology Reviews, v. 9, n. 1, p. 45-62, 2013.

TONNESMANN, E.; KANDOLF, R.; LEWALTER, T. Chloroquine cardiomyopathy - a review of the literature. Immunopharmacology and Immunotoxicology, v. 35, n. 3, p. 434-442, 2013.

TSANG, A. C. et al. The diagnostic utility of multifocal electroretinography in detecting chloroquine and hydroxychloroquine retinal toxicity. American Journal of Ophthalmology, v. 206, p. 132-139, 2019.

UL, Q. M. T. et al. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 2020.

VIVEKANANTHAN, S. C. et al. Preliminary report of anti-hepatitis C virus activity of chloroquine and hydroxychloroquine in huh-5-2 cell line. Indian Journal of Pharmaceutical Sciences, v. 68, n. 4, 2006.

WANG, L. F. et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. Journal of Interferon & Cytokine Research, v. 35, n. 3, p. 143-156, 2015.

WOLFE, F.; MARMOR, M. Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care & Research, v. 62, n. 6, p. 775-784, 2010.

WU, S. F. et al. Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling. Arthritis Research & Therapy, v. 19, n. 1, p. 183, 2017.

XU, T. et al. Indomethacin has a potent antiviral activity against SARS CoV-2 in vitro and canine coronavirus in vivo. bioRxiv, 2020.

XU, Y.; LI, X.; ZHU, B.; LIANG, H.; FANG, C.; GONG, Y.; ZHANG, H. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine, p. 1-4, 2020.

YAM, J. C.; KWOK, A. K. Ocular toxicity of hydroxychloroquine. Hong Kong Medical Journal, v. 12, n. 4, p. 294-304, 2006.

YANG, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 2020.

YAO, X. et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 2020.

YUSUF, I.H. et al. Hydroxychloroquine retinopathy. Eye (Lond), v. 31, n. 6, p. 828-845, 2017.

ZHAO, H. et al. Hydroxychloroquine-induced cardiomyopathy and heart failure in twins. Journal of Thoracic Disease, v. 10, n. 1, p. E70-E73, 2018.

ZAKI, A. M. et al. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, v. 367, n. 19, p. 1814-1820, 2012.

ZHOU, D.; DAI, S. M.; TONG, Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. Journal of Antimicrobial Chemotherapy, 2020.

ZHU, N. et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, v. 382, n. 8, p. 727-733, 2020.

ZUMLA, A.; HUI, D. S.; PERLMAN, S. Middle East respiratory syndrome. Lancet, v. 386, n. 1, p. 995-1007, 2015.




DOI: https://doi.org/10.34119/bjhrv3n3-029

Refbacks

  • There are currently no refbacks.