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ABSTRACT 

The emergence of COVID-19 in China, in December of 2019 led to a local epidemic that 

rapidly spread to multiple countries in the world, including Brazil.  Nowadays, there is an 

accelerated search to understand the dynamics of the spread of the disease and evaluate the 

effectiveness of intervention measures.  Given these special socioeconomic conditions 

surrounding Brazil, using the  predictive  models  developed  for  other  countries  can  

make  a  very  incomplete picture of the epidemic,  since these differences could result in 

different patterns in low income settings.  The aim of this work is to simulate interventions 

and understand the impact to reduce the spread of COVID-19 considering the  

socioeconomic  conditions  of  Brazil.   With  this  purpose  we  use  an  agent- based model 

(ABM), a subarea of the Artificial Intelligence, as it allows us to treat each individual in a 

personalized manner, as well as the environment of which they are part.  The simulations 

have heterogeneous populations, considering different age groups, socioeconomic 

differences and number of members per family, contacts and movements intra and inter the 

sub-populations (favelas and non-favelas), numbers of Intensive Care Unit (ICU) and study 

different scenarios to show how the interventions can influence the spread of the virus in 

the population of simulated environments. 

 

Keywords. COVID-19;  SARS-CoV-2;agent-based modeling;  favelas;  slums; simulation; 

artificial intelligence 

 

 

RESUMO 

O surgimento do COVID-19 na China, em dezembro de 2019, levou a uma epidemia local 

que se espalhou rapidamente para vários países do mundo, incluindo o Brasil. Atualmente, 

há uma busca acelerada para entender a dinâmica da disseminação da doença e avaliar a 

eficácia das medidas de intervenção. Dadas essas condições socioeconômicas especiais em 

torno do Brasil, o uso dos modelos preditivos desenvolvidos para outros países pode fazer 

uma imagem muito incompleta da epidemia, uma vez que essas diferenças podem resultar 

em padrões diferentes em contextos de baixa renda. O objetivo deste trabalho é simular 

intervenções e entender o impacto para reduzir a disseminação do COVID-19, 

considerando as condições socioeconômicas do Brasil. Com esse objetivo, usamos um 

modelo baseado em agentes (ABM), uma subárea da Inteligência Artificial, pois permite 

tratar cada indivíduo de maneira personalizada, bem como o ambiente do qual eles fazem 

parte. As simulações têm populações heterogêneas, considerando diferentes faixas etárias, 

diferenças socioeconômicas e número de membros por família, contatos e movimentos 

intra e inter subpopulações (favelas e não-favelas), número de unidades de terapia intensiva 
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(UTI) e estudam diferentes cenários mostrar como as intervenções podem influenciar a 

propagação do vírus na população de ambientes simulados.  

 

Palavras-chave: COVID19; SARS-CoV-2, modelagem baseada em agente; favelas; 

favelas; simulação; inteligência artificial 

 

 

1  INTRODUCTION 

Since a severe respiratory disease was recently reported in Wuhan,  Hubei province 

of China, on December 2019 the disease identified as COVID-19 quickly spread to other 

regions. Due to highly transmissible nature of SARS-CoV-2 virus, it has spread to multiple 

countries, including Brazil, and has been declared a pandemic by the World Health 

Organization (WHO). The first patient was tested positive for the virus in Brazil on 

February  2020  and  as  of  16  April  2020,  at  least  30,000  cases  and  1,924  deaths  

have  been reported [da Sau´de 2020].  Currently, there is no vaccine or therapies approved 

for treatment [Sanders et al. 2020, Shi et al. 2020]. 

Around the world there is an accelerated search to understand the transmission 

dynamics of the infection and evaluate the effectiveness of intervention measures. These 

actions aim to estimate mortality and the healthcare demand, while preserving and 

considering economic effects.  How the countries respond in the initial weeks is critical in 

influencing the trajectory of national epidemics.   However,  despite other countries are 

facing these challenges before Brazil, great uncertainty remains regarding the epidemics 

peaks due to special factors such as environmental and social conditions and immunity 

levels of the population. In Brazil, 11.4 million people, nearly 6% of the population, live in 

favelas1. The favelas are human settlement areas that combine the lack of sanitation and 

water, compounded by insufficient living space for families, which means more than three 

people sharing the same room2. Virus transmission may be facilitated in these dense 

populations, characterized by frequent inter-individual contact, crowded housing, improper 

sanitation systems, poor education, and poor nutritional status [Go´es et al. 2019].  

Furthermore, in this period, most of Brazilian states faces a high incidence of Severe Acute 

Respiratory Infection (SARI), compared to the same period in previous years [da Sau´de 

 
1 The favelas are Brazilian slums. We chose the term favelas instead of slums due to the fact that we use 

very specific information of these Brazilian communities that are not easily extrapolated to other contexts. In 

this work we use favelas in scenarios of Brazil and slum for other countries. 
2 www.unhabitat.org. SOWC/06/07/B/Slum2 

http://www.unhabitat.org/
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2020]3. This is the case of the Rio de Janeiro which is also the Brazilian state with the 

highest occurrence rate of tuberculosis [Pereira et al. 2015], two important comorbidity 

conditions, that could impose poorer clinical outcomes in COVID-19 patients [Guan et al. 

2020a]. 

Thus, given these special socioeconomic conditions surrounding Brazil,  using the 

predictive models developed for other countries can make a very incomplete picture of the 

epidemic, since these differences will likely result in different patterns in low income 

settings. 

The aim of  this  work  is  to  simulate interventions  and  understand  the  impact to 

reduce the spread of COVID-19 considering the socioeconomic conditions of Brazil. With 

this purpose we use an agent-based model (ABM), a subarea of the Artificial Intelligence,  

combined with  the  SEIR  (Susceptible,  Exposed,  Infectious  and  Removed) disease 

dynamic model, according to the epidemiological characteristics of COVID-19 [Sun et al. 

2020, Adhikari et al. 2020]. The ABM approach is suitable to study the spread of the 

disease, as it allows us to treat each individual in a personalized manner, as well as the 

environment of which they are part.  The simulations have heterogeneous populations, 

considering different age groups, socioeconomic differences and number of members per 

family, contacts and movements intra and inter the sub-populations (favelas and non-

favelas), numbers of Intensive Care Unit (ICU) and study different scenarios to show how 

the interventions can influence the spread of the virus in the population of simulated 

environments. 

In this work the simulations are conducted for the Rio de Janeiro city, in the region 

of the Copacabana, as it presents different socioeconomic areas, due to the existence of the 

Pavão-Pavãozinho favela complex in this region, which could represents a picture of the 

Brazil.  Some scenarios of interventions are studied:  simulating the spread of the virus in 

a population without isolation, the isolation of the elderly (over 60 years old) and young 

people (under 18 years), in addition to the previous one, with the displacement of agents 

on alternate days and the last with the full isolation after thirty infected individuals.  Also, 

we simulate the scenario with homogeneous population, which not consider the favela and 

conditions of these population.  This point out the importance in consider sub-populations 

 
3 http://info.gripe.fiocruz.br 

http://info.gripe.fiocruz.br/
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in the simulations to a real evaluation of spread and control of outbreaks. The results show 

the number of infections and deaths over the time, including due to lack of ICUs. 

This work is organized as follow: the works related to our research are presented in 

Section 2. The methodology for the simulations, with the ABM approach, the modeling 

spread dynamics, details of the population and parameters for the computer simulations are 

presented in Section 3.  The experiments and results for the simulated scenarios in Section 

4, followed by the final considerations in Section 5. 

 

2  RELATED WORKS 

Several works have demonstrated the importance in consider the slums and its 

specific life conditions to understand the spread and control of epidemics scenarios, such 

as for Influenza [Adiga et al. 2018, Verma et al. 2018] and Ebola [Long et al. 2018].  In the 

same way, other studies pointed out to the impact of the population’s characteristics on 

respiratory diseases like influenza, tuberculosis and also human coronaviruses (HCoV) in 

Brazilian favelas [Goes et al. 2019, Pereira et al. 2015].  However, despite the great number 

of works being published about COVID-19 in the last weeks, to the best of our knowledge, 

at this moment, there is no work considering using agent-based modeling to simulate the 

COVID-19  spread  in  the  contexts  of  the  slums  in  other  countries  nor  in  the  Brazilian 

favelas.  Thus, the related works presented in this section are focused on researches that 

consider the role of slums in the spread and control of infectious diseases or the use of an 

agent-based model to study epidemic spreading. 

Some researches demonstrated the importance in considering the slum and non- 

slum  subpopulations  [Long et al. 2018,  Adiga et al. 2018,  Chen et al. 2016],  and  clusters  

of  areas  with  high  population  density  [Engebretsen et al. 2019]  in  modeling  the spread  

and  control  of  infectious  diseases.   Chen  et  al.[Chen et al. 2016]  and  Adiga  et al.[Adiga 

et al. 2018] use a SEIR and agent-based model to study the impact of influenza epidemic 

in the slum and non-slum areas of Delhi, the National Capital Territory of India. In order 

to express the differences they take into account the slum demographics and residents 

activities.  The results show that the peak of infection is overestimated by several weeks, 

and the cumulative infection rate and peak infection rate are underestimated by 10–50% 

when slum attributes are ignored. Improper specification of slums in large urban regions 

results in underestimation of infections in the entire population and could lead to misguided 

interventions by policy planners. 
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Many agent-based models were proposed to simulate epidemic outbreaks without 

considering the slum context nor the COVID-19 context.  The work of Andrade et al.  [de 

Andrade et al. 2020] studies the spread and control of tuberculosis in the city of Rio de 

Janeiro (Brazil) using an agent-based and SEIR disease dynamic model.   They conclude 

that the models are very helpful to identify the positive impact of the control measures in 

the interruption of disease spread.  The model, although simple, have a high predictive 

value and an enormous capacity to be adapted and applicable to others scenarios, which 

encompass different aspects of Tuberculosis dispersion.  The model presented in [Hackl 

and Dubernet 2019] is used to study seasonal influenza outbreaks in the metropolitan area 

of Zurich, Switzerland, where different activities take place during a daily citizens’ routine. 

Despite the simplicity of the implemented epidemic spread model, which only account for 

susceptible, infected, and recovered individuals (SIR disease dynamic model), the results 

show how this simulation can help to improve comprehension of the disease spread 

dynamics and to take better steps towards the prevention and control of an epidemic.  The 

work of [Hunter et al. 2018] proposes an agent-based model to simulate the spread of an 

airborne infectious diseases in Irish towns (SEIR model). They argue that the model is able 

to capture complex interactions between factors and emergent results based on agents 

decisions within the model that other types of models cannot. These interactions and 

emergent results are essential in understanding the dynamics of an outbreak. 

Finally, these works do not consider the slum context nor COVID-19, but also 

propose an agent-based model to simulate epidemic outbreaks. Although the models are 

much simpler than ours, as they do not deal with subpopulations and so many different 

factors and interactions, they demonstrate the effectiveness of using this model to simulate 

epidemics scenarios. 

In this section we presented the works related to our agent-based model for the 

spread of the COVID-19 in a Brazilian context of two subpopulations:  favela and non- 

favela.  We have shown that some studies showed that slums subpopulations can lead a 

model to underestimate the spread of contagious diseases.   We’ve also shown that the 

models already created are too simple to account for the characteristics of a favela 

community.  We propose a model that combines some characteristics of these related works 

in order to provide a better understanding of how the spread of the COVID-19 can affect 

the lives of people in a Brazilian context of social-economic inequality and environmental 

conditions. 
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3 METHODOLOGY 

Agent-based models (ABM) are used in many complex problems where simple 

mathematical formulae are not sufficient to provide more detailed and precise description 

of the studied context [Railsback and Grimm 2019].   The collective behavior is then 

analyzed and the results derive conclusions and insights that can help us to understand 

social contagion phenomena in a more intuitive and practical way. The practicality of the 

ABM combined with the powerful outcomes provided by it are a good combination for 

studying the spread of contagious diseases in real contexts. 

The ABM approach is suitable for the COVID-19 spread as it permits to add to the 

model individual characteristics of the agents together with environmental information 

from the context where the individuals are part of. 

In this section the model is presented together with the considerations,  background 

and hypotheses adopted when the project decisions were made. It is also explained how the 

computational simulations were generated. 

 

3.1  MODELING SPREAD DYNAMICS 

The classical epidemiology modeling uses compartmental modules to simplify the 

mathematical description of infectious disease.  The population is divided into 

compartments, where each compartment represents the characteristics of the individual at 

a given time. Obeying the principle of equilibrium of the population, each individual can 

be in only one compartment per unit of time, and the exchange of compartments must take 

place according to the assumptions made about the nature of the studied phenomenon.  

These models can be used to predict properties of how a disease spreads and for 

understanding how different situations may affect the outcome of the epidemic, such as 

vaccines and isolation actions. 

Based  on  the  epidemiological  characteristics  of  COVID-19  [Sun et al. 2020, 

Adhikari et al. 2020], the model presented in this work was designed using the SEIR dis- 

ease dynamic model [Oliveira et al. 2008], in which the population is divided into four 

compartments: 

•  Susceptible (S): includes all individuals who can contract the disease, if they are 

exposed to it; 
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•  Exposed (E): individuals who have disease and are in the incubation period, in 

other words, are able to transmit it but have no symptoms (low viral load).  They act as 

potential vectors on the spread of the virus; 

•  Infectious (I): includes individuals who have the disease, are able to transmit it 

and have symptoms (high viral load). 

•  Removed (R): class of individuals who recover or die. 

Figure 1 shows the four groups and the factors that cause individuals to change 

groups.   Initially,  people who belong to the susceptible compartment and have contact 

with a sick person will get the virus and move to the exposed compartment group (has no 

symptoms but has viral load). After the incubation period, with the appearance of 

symptoms, these individuals will move to the infected group. In this compartment, if the 

individual received the treatment and was cured, they pass to the removed group.  In the 

other hand, if the individual progresses to having critic symptoms, they are admitted for 

treatment in the Intensive Care Unit (ICU). In case there are no available ICUs for patients 

in critical condition, the individual dies and moves to the removed group. Those who got 

admitted to the available ICUs are moved to the removed group after the treatment period. 

They can be counted as cured in case of success in the treatment or dead by the disease 

otherwise. 

 

Figure 1. SEIR model and transition factors between compartments. 

 

 

For modeling the compartments’ transitions shown in Figure 1 we assumed the 

following assumptions: 

i)  The population is fixed, and during the simulation they won’t have contact with 

members from other populations or be influenced by migrations; 



Brazilian Journal of health Review 
 

 Braz. J. Hea. Rev., Curitiba, v. 3, n. 2, p.647-3673  mar./apr. 2020.   ISSN 2595-6825 
 
 

3655  

ii)  The initial population size is constant.  This means that birth rate and mortality 

rate from natural causes are disregarded; 

iii)  The  population  is  heterogeneous,  composed  of  different  age  groups,  

socioeconomic differences and number of members per family; 

iv)  Susceptible individuals can be contaminated when in contact with exposed or 

infectious individuals; 

v)  All individuals are susceptible and have no immunity to the virus initially; 

vi)  Individuals make physical contact at home and at work, and interactions in 

transportation vehicles are disregarded; 

vii)  Individuals have different viral loads, according to the compartment they are in 

(Exposed or Infectious);viii)  Infectious individuals are automatically put in isolation and 

with less contact with family members;ix)  Individuals with mild and moderate symptoms 

recover after treatment time; 

x)  If an ICU bed is available, individuals with severe symptoms are automatically 

hospitalized.  Individuals with severe symptoms who are not hospitalized die automatically. 

Only a percentage of severe cases recover; 

xi)  Individuals automatically obey the isolation measures imposed. 

 

3.2   POPULATION 

We are interested on understanding the spread of the COVID-19 in a Brazilian 

contexts of favelas and other wealthier regions.  So the the data used to describe the main 

characteristics of the population is based on census of Rio de Janeiro city.  To account for 

the different socioeconomic differences we picked the Copacabana neighborhood. There is 

a big socioeconomic gap between the favela within it (the Pavão-Pavãozinho favela 

complex) and the other parts of the neighborhood.  According to data from the Favelas 

Report in the city of Rio de Janeiro [Cavallieri and Vial 2010], Copacabana has 161,191 

inhabitants, of those 12,094 (8%) live in favelas. 

Also, Rio de Janeiro is the capital with the biggest elderly population in Brazil (about 

18%4) and 29% live in Copacabana [da Silveira Barroso Alves et al. 2016]. How- ever,  there  

is  a  clear  difference  in  the  age  distribution  of  the  population  of  Pavão-Pavãozinho 

favela and other areas of Copacabana, with big discrepancy in their elderly population [Vial 

 
4 https://sidra.ibge.gov.br/tabela/261#notas-tabela 
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et al. 2017].  While there is a predominance of young people, between 10 and 29 years old, 

in Pavão-Pavãozinho, in other areas of Copacabana, the number of young people is 

significantly narrower.  This information is important to be represented in the model, since 

the elderly will suffer more from severe and critical symptoms than younger people [Guan 

et al. 2020b].  However, even though there are not many elderly people in Pavão-Pavãozinho 

(around 5%), this region is of great importance in the simulation, since people who live in 

areas with low socioeconomic conditions have a higher risk of contamination. 

As the study focus on the spread of COVID-19, it is also important to consider the 

number of ICUs available in the region we chose to model. According to the technical note 

of [Batista et al. 2020], the Metropolitan I region, in which Copacabana is located has 6 ICUs 

per 100 thousand inhabitants. That will help our model to be closer to reality when 

accounting for the hospital infrastructure provided for Copacabana. 

The differences that we could represent using this region is picture of the differences 

that we can find in Brazil. 

 

3.3  PARAMETERS AND COMPUTER SIMULATIONS 

This work presents an Agent-Based Model (ABM) of the SEIR structure presented in 

Section 3.1 (Figure 1). The ABM was implemented using the Anylogic v.8.5.05  software. 

ABMs are a micro-scale modeling approach where specific and simpler characteristics of 

the agents and their interaction are responsible for generating the outcomes for the whole 

universe simulated.  The idea is to recreate and predict some events in real world through 

computational simulations. This strategy is largely used in many fields as biology, ecology, 

and also for the spread of epidemics. 

Firstly,  the parameters and initial variables used for the simulations were set, as  

shown  in  Table  1.   Then,  the  simulation  was  run  and  the  macro-level  results  were 

observed and analysed.  The variables that account for the traits of the agents is shown in 

Table 2. These traits are responsible for defining the agents’ interactions and reactions with 

the environment and other agents. The variables shown on the bottom part of Table 2 are 

used to obtain the outcomes of the simulations, as the Contamination Rate (CR), the 

Recovery Rate (RR) and the Mortality Rate (MR), presented further in Section 4. 

 
5 https://www.anylogic.com 

http://www.anylogic.com/
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The CR rate represents how the spread of the virus is progressing day by day, as shown in 

Equation 1 where 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑑is the number of infectious agents on day d while 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑑−1 is 

the number of infectious agents one day before.  A value bigger than 1 means that there is an 

increase on the number of contaminated agents, and a number below 1 indicates a decrease on the 

contaminated agents number. 

 

                                                          𝐶𝑅𝑑  =
𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑑

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑑−1
 (1) 

 

The  RR  rate  indicates  the  rate  at  which  the  infectious  agents  recover,  and  is 

expressed in Equation 2 where 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑑 is the number of recovered agents on day d 

and 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑑−1 is the number of recovered agents on the day before.  A value bigger 

than 1 means that there is an increase on the number of recovered agents, and a number 

below 1 indicates a decrease on the number recovered people. 

 

                                                       𝑅𝑅𝑑  =
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑑−1
 

 

The MR rate is the rate in which the agents die, and can be seen in Equation 3 where 

𝐷𝑒𝑎𝑡ℎ𝑑  is the number of deaths on day d and 𝐷𝑒𝑎𝑡ℎ𝑑−1 is the number of deaths on the 

previous day. A value bigger than 1 means that there is an increase on the number of dead 

agents, and a number below 1 indicates a decrease on the number of deads from one day to 

the previous one. 

                                                                   𝑀𝑅𝑑  =
𝐷𝑒𝑎𝑡ℎ𝑑

𝐷𝑒𝑎𝑡ℎ𝑑−1
 (3) 

 

The parameters for the population has been shown previously in Section 3.2. These 

parameters are shown also in Table 1 and used in our simulations. 

Table 1. Parameters and values. 

Parameters Values 

Cycle (δt) 

Update graphs 

Initial infected individuals 

% of favelas 

% of non-favelas 

ICU beds 

1 day 

every 2 hours 

3 

8% (Section 3.2) 

92% (Section 3.2) 

300 
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Average individuals per family (slum) 

Average individuals per family (non-slum) 

Incubation time 

Treatment time (home and ICU) 

Probability of development critical cases 

Recover of hospitalized individuals 

Threshold for interventions 

6 

3 

5-7 days 

14 days 

14% 

20% 

10 Infectious 

 

The parameters on Table 1 related to the disease, like incubation and treatment time, 

probability of developing critical cases and recover are based on the studies presented in the 

literature [Lauer et al. 2020, He et al. 2019] and estimated for another countries, specially 

from China and Europe, since in Brazil we don’t have enough information yet.  It is still not 

clear that percentages,  therefore we assume them based on different researches [ICNARC 

2020]. 

Families and their members are randomly generated, respecting the parameters in 

Table 1 (percentage and average quantity). Work groups also generated randomly. The Age 

variable (Table 2) is initialized following a distribution that represents the real age groups of 

the simulated population, as explained in Section 3.2.  This variable is used to calculate the 

birth dates. 

Table 2. Variables and descriptions. 

 Variables Type Description 

 

A

g

e

n

t

s 

Contacts per day 

Infection probability 

Age 

Birthday 

Critical 

Favela 

State 

Local 

Home group 

Work group 

int 

double 

int 

int 

boolean 

boolean 

derived 

derived 

derived 

derived 

# of contact with another agents per day 

probability of transmitting virus 

agent age 

birthday of agent 

true if agent develops a critical case 

true if agent lives in favela 

current state of SEIR model 

current local of agent: home or work 

family contacts network 

work contacts network 

S

i

m

u

l

a

ti

o

n 

Days 

Susceptible 

Exposed 

Infectious 

Removed 

Hospitalized 

Critical cases 

Death and Death by ICU lack 

Recovered 

Current time 

int 

int 

int 

int 

int 

int 

int 

int 

int 

time 

# day after first infection 

# of susceptible agents 

# of exposed agents 

# of infectious agents 

# of removed agents 

# of inpatient agents 

# of agents with critical case 

# of dead agents by virus and ICU lack 

# of recovered agents 

current simulation time 

# representing the amount of. 
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3.3.1  Daily Events: Movement of agents and locals 

An important factor in our model is the interaction between agents,  that is,  how each 

agent is exposed to other agents and how their physical contact occur.   The dynamics 

between the agents are modeled in two different locations, at home and at work, forming 

two  different  contact  network  for  each  agent.   Besides  that,  the  model  also  considers 

two sub-populations:  an agent (individual) could live and work in a favela or in a non-favela 

region. This results in two types of interactions. The interactions intra-groups are between 

individuals from the same group (favela or non-favela).   For example,  an interaction from 

a person who lives or works in a favela with another person also from the favela.  The 

interaction inter-groups happens between two individuals from different groups.  Thus, every 

day of the simulation (one cycle), the agents move from home to work and from work to 

home and may have contacts with people from other groups.  In this work, contacts in 

transport vehicles were not considered. 

Each simulation cycles take place in one day and each hour of the day is responsible 

for defining the location where each agent is located.  In the beginning of the day (and at the 

start of simulation), each agent is assigned to their respective family group, so their contact 

network is their family members.  At a certain time in the morning, each agent travels to 

their workplace, where they are assigned to their work group and change their contact 

network.  Before a day cycle finishes, each agent returns to their home and family network.  

The Infectious agents who develop the critical case are transferred to hospital, where they 

are admitted.  

 

3.3.2  Contacts of Agents 

The transmission of the virus from an Infectious agent to a Susceptible agent occurs 

by controlling two variables: InfectionProbability and ContactsPerDay. The probability that 

an agent transmit the virus to another agent is defined by the infection probability, calculated 

at each contact with another agent. 

Asymptomatic individuals (Exposed in our model) have low viral load, but interact 

more with other agents in their networks [Shi et al. 2020, Rothe et al. 2020].  The daily 

amount of interactions for each person is estimated in 20, following the results obtained by 

[Del Valle et al. 2007].  It is assumed that Infectious individuals have higher viral load, and 

as they present the symptoms of the disease, they will put themselves in isolation. In this 
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situation, they interact less with other agents in their networks (average of 5 contacts per 

day). 

The dead agents are removed from the respectively contacts network,  and no longer 

have contact with other agents. 

 

3.3.3  Simulated Interventions 

The model was simulated in 5 different scenarios: 

1.  Scenario  1  simulates  the  spread  of  the  virus  in  a  population  without  isolation 

interventions, where agents move freely from home to work and work from home. 

2.  Scenario 2 also has no isolation of the agents but has a homogeneous population, 

disregarding the favela’s sub-population. 

3.  Scenario 3 simulates the isolation of the elderly (over 60 years old) and young 

people (under 18 years).  Only agents in the middle age can move from home to work. 

4.  Scenario 4 simulates the displacement of agents on alternate days.  The criterion 

adopted for this intervention is:  agents born in even days can only leave on even days and 

agents born on odd days, only on odd days. 

5.  Scenario  5  simulates  the  full  isolation  after  thirty  infected  agents,  where  

each agent stay at home until the infection is over, only 5% of the agents circulate to consider 

essential services. 

In this section we presented the parameters for the simulation of the COVID-19 spread 

in a context of two different groups of people with a high socioeconomic inequality.  We 

presented the main characteristics of the model, as well as the parameters and variables used 

to run the simulations. Lastly we presented the different scenarios chosen in order to analyze 

which isolation (or quarantine) method would be more efficient in a context like Rio de 

Janeiro city. Next section will present the results of the simulations. 

 

4   RESULTS 

This section presents the results of the experiments obtained after simulating the 5 

scenarios presented last section.   It is important to note that,  in all scenarios,  there are a 

considerable number of critical cases,  since the large part of simulated population belong to 

the risk group because it contains elderly people and people that live in favelas (as mentioned 

in Section 3.2).  Also, considering that the virus arrived in Brazil through individuals who 
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traveled to other countries [Candido et al. 2020], the initially infectious agents belong to the 

non-slum sub population. 

Due to the limitation of the maximum number of agents that can be simulated in the 

AnyLogic software, the total number of agents was set on approximately 35,000 agents and 

the other parameters that consider the population size were adjusted accordingly, including 

the parameters presented in Table 1, already adjusted to the proportional values. 

 

4.1  SCENARIO 1 – WITHOUT ISOLATION 

The Figure 2(a) shows the number of agents in each compartment of the SEIR model 

over time.  The green line refers to the number of Susceptible agents, the yellow line refers 

to the Exposed agents, red represents the Infectious agents and gray to the Removed agents. 

When the number of Exposed and Infected agents increases, the number of Susceptible 

decreases. As the agents recover from the disease or die due to the disease, the number of 

Removed agents increases. This tendency is in accordance with the studied phenomenology. 

As isolation interventions are not implemented in this scenario, the agents circulate 

freely, allowing the virus to spread quickly and affecting a large part of the population. As a 

considerable part of the population belongs to the risk group, the number of hospitalizations 

with critical cases (red curve in Figure 2(b)) grows rapidly and reaches the maximum number 

of available ICUs (green line in Figure 2b), reaching 684 critical cases (Figure 2(c)) in just 

over 60 days.  When maximum ICU occupancy is reached, agents with critical cases began 

to die from lack of health resources (purple curve in Figure 2d). The total number of deaths 

from the virus was 571, with 175 due to lack of ICU. The total number of deaths represents 

approximately 1.63% of the total simulated population. 

It is known, based on the models developed all around the world for COVID-19, that 

without isolation the spread of the virus is faster, causing the health system to collapse. 

However, this scenario works as a basis of comparison for the other ones presented next 

(with isolation measures). Also, it is important to known how long is the time for the collapse 

in the Brazilian scenario and the numbers associated to it. 

In  this  baseline  scenario,  the  infection  lasted  92  days,  with  a  peak  of  25,581 

infectious in 53 days.  The total number of infectious agents was 33,357 agents, 3,457 living 

in the favela and 29,900 outside the favela. The collapse of the ICU system occurred in 53 

days, coinciding with the day on which the infectious peak occurred. 



Brazilian Journal of health Review 
 

 Braz. J. Hea. Rev., Curitiba, v. 3, n. 2, p.647-3673  mar./apr. 2020.   ISSN 2595-6825 
 
 

3662  

Observing the highest values calculated for CR presented in Table 3, we noticed that 

the spread of the virus is higher within the favelas (1.5×), even though the agents initially 

infected were not residents of the favela. The high MR value (4.68) can be interpreted in 

Figure 2(d), where the mortality rate represents the high slope of the gray and purple curves. 

 

Figure 2. Results for Scenario 1 (no interventions). 

 
(a)  SEIR distribution over time. 

 

                    (b)  Inpatients.                                  (c)  Critical cases.                          (d)  Mortalities. 

 

Table 3. Values reached for the calculated rates for Scenario 1 . 

Scenario 1 

Contamination Rate (CR) Recovery Rate (RR) Mortality Rate 

(MR) 

non-favela favela  general  

2 

 

4.68 

2 3 1.42 

 

 

4.2  SCENARIO 2 - WITHOUT ISOLATION AND HOMOGENEOUS POPULATION 

This scenario disregards the favela agents and demonstrates that under a 

homogeneous population the results of infections and deaths could be underestimated. 

For example, again the number of hospitalizations with critical cases (red curve in 

Figure 3(b)) grows rapidly and reaches the maximum number of available ICUs (green 

line in Figure 3(b)).  However, note that the number of critical cases (Figure 3(c)) in just 

over 60 days is less than in scenario 1, with 79 fewer cases.  In addition, in Figure 3(d), 
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the total number of deaths from the virus was 523 (48 less than scenario 1), with 119 due 

to lack of ICU (56 less than scenario 1). 

This result demonstrates the importance in consider sub-populations in the 

simulations to a real evaluation of spread and control of outbreaks. 

 

Figure 3. Results for Scenario 2 (homogeneous population and no interventions). 

(a)  SEIR distribution over time. 

 
                  (b)  Inpatients.                                  (c)  Critical cases.                          (d)  Mortalities. 

 

 

4.3 SCENARIO 3 - ELDERLY AND YOUNG ISOLATION 

Figure 4(a) shows the number of agents in each compartment of the SEIR model over 

time.  There is a flattening of the Infectious curve when the isolation of the elderly and 

young  agents  is  started,  reducing  the  peak  of  Infectious  agents.   In  this  scenario,  the 

number of critical cases reached 603 (81 cases less than in scenario 1). The total number of 

deaths was 504 (67 less), with 83 due to lack of ICUs (92 less). Despite the reduction, the 

number of infected and dead is still high, due to the fact that the networks of family contacts 

are maintained and the agents without isolation are the vectors of intra-group transmission. 

Thus, individuals who are in isolation are also infected. 

In this scenario, the infection lasted 93 days, but with a reduction in the amount of 

infections agents.  The peak of infectious people occurred after 49 days (2 days less than 

in scenario 1), but with a 17.9% reduction in the infectious peak and a 6.8% reduction in 

the total number of infected agents.  The peak of infectious was 21,018 and the total number 

of infected agents was 31,091 (3,453 in favela and 27,638 in non-favela). Comparing the 

number of infections agents of different populations, the reduction of infected agents 
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outside the favela was 7.6%, while in the favela it was 0.11%. The ICU lack occurred after 

51 days, 2 days after the peak of infectious. 

Table 4 shows that, for this scenario, the CR was about of 1.143× greater within the 

agents of favela. Comparing the RM of this scenario with the base scenario, there was a 

reduction of 62.6% and can be seen with the reduction in slope of curves in Figure 4(d). 

 

Figure 4. Results for Scenario 3 (isolation of elderly and young people). 

 

(a)  SEIR distribution over time. 

 
(b)  Inpatients.                                  (c)  Critical cases.                          (d)  Mortalities. 

 

Table 4. Values reached for the calculated rates for Scenario 3. 

Scenario 3 

Contamination Rate (CR) Recovery Rate (RR) Mortality Rate 

(MR) 

non-favela favela  general  

3 

 

1.75 

1.75 2 1.69 

 

4.4  SCENARIO 4 - ALTERNATE DAYS ISOLATION 

In  this  scenario,  the  isolation  measure  adopted  is  more  rigorously,  allowing  

agents  to leave the house on alternate days, as explained in the Section 3.3.3. The flattening 

of the Infectious curve presented in Figure 5(a) is even greater than in Scenario 3, and the 

peak of this curve is approximately 2.5x less than in Scenario 1.  The number of critical cases 

are 486 (Figure 5(c)) and the total number of deaths are 380 (Figure 5(d)).  As in this scenario 

there is no lack of ICU (Figure 5(b)), therefore there are no deaths as a result of this, as 
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observed in the previous scenarios. This result shows the importance of not filling the health 

system. 

For this scenario the infection lasted 134 days, however with a great reduction in the 

peak and in the total of infectious agents. In 84 days, the number of infectious agents peaked 

at approximately 10,000 agents, 61% less than in scenario 1 and 52.4% less than in scenario 

3.  The total number of infected agents was 25,705 (-22.94% in relation to to scenario 1 and 

17.32% to scenario 3). Inside the favela the total number of infected agents was 3,251 (-

5.96% and -5.85% in relation to scenarios 1 and 3) and outside the favela it was 22,454 (-

24.9% and -18.75% in relation to scenarios 1 and 3). There was no lack of ICUs because the 

maximum number of simultaneous patients was. 

The  contamination  rates in  the  Table  5  show that  the  spread  in  favela  is also 

greater in this scenario. 

 

Figure 5.  Results for Scenario 4 (alternating isolation according to the birthday dates). 

 

(a)  SEIR distribution over time. 

 

(b)  Inpatients.                                  (c)  Critical cases.                          (d)  Mortalities 

 

Table 5. Values reached for the calculated rates for Scenario 4. 

Scenario 4 

Contamination Rate (CR) Recovery Rate (RR) Mortality Rate 

(MR) 

non-favela favela  general  

2 

 

1.5 

1.5 2.25 1.61 
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4.5 SCENARIO 5 - FULL ISOLATION 

         For this scenario, the SEIR graph will not be shown because the change in the agents’ 

compartment  is  not  apparent.   The  Figure  6(a)  shows  the  hospitalized  agents  and  the 

availability of ICUs, Figure 6(b) shows the critical cases and Figure 6(c), the amount of 

deaths. 

         In this scenario, the infection disappeared in 38 days and reached the infectious peak 

of 316 agents after 26 days. The total number of infected agents was 366, being 266 in non-

favela and 100 in favela. Table 6 shows that the spread in non-favela is greater in this 

scenario. This is because there was no time for the virus to spread through the agents of 

favela, since the simulations start with infectious agents outside the non-favela. 

 

Figure 6. Results for Scenario 5 (full isolation). 

 

                  (a)  Inpatients.                                  (b)  Critical cases.                          (c)  Mortalities. 

 

Table 6. Values reached for the calculated rates for Scenario 5. 

Scenario 5 

Contamination Rate (CR) Recovery Rate (RR) Mortality Rate 

(MR) 

non-favela favela  general  

4 

 

2 

 

 

4.6   DISCUSSIONS 

As there are no measures to immunize the population yet, it is very likely that a large 

part will still be contaminated by the virus.  However, observing the spread of the virus in 

the 5 studied scenarios, we can see the importance of adhering to isolation measures so that 

less individuals become ill causing a collapse on the health system. With the right strategy 

it is possible to overcome the epidemic so that the health system is able to serve a larger 

number of individuals in critical cases reducing the number of deaths. 
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The most worrying factor that can be pointed out with this study is the spread of the 

virus within the favelas, as many factors such as hygiene conditions and the crowding of 

people causes it to spread more quickly. The crowding factor inside the houses can be seen 

in Figure 7, where the left column shows the non-favela spread and the right column in the 

favela.  In this figure the circles are agents and the colors follow the same used in Figure 1 

for Susceptible (green), Exposed (yellow), Infectious (red) and Removed (gray). Initially, 

all agents are Susceptible. When an agent from each family contracts the virus, he becomes 

Exposed and has a low viral load (small arrow).   The viral load increases (larger arrow) 

when these agents become Infectious, increasing probability of transmitting the virus to other 

agents in the family. After, all agents of the families are Infectious and become Removed. 

This illustration is very close to what happened in scenario 1, in which 

99.49% of the total population was infected.  In both simulated scenarios, the CR was higher 

in the favelas (≈ 1.5× higher). 

Table 7 presents a summary of the results for simulated scenarios. Looking at the 

values, it is possible to see that the isolation of elderly and young (scenario 2) was not very 

efficient in relation to scenario 1, since there was still a collapse of ICU resources.  The 

intervention on alternate days (scenario 3) was shown to be more efficient than scenarios 1 

and 2 and without ICU lack. However, maintaining control for a long period (134 days) 

makes it difficult to implement. The best results were obtained for scenario 4, where only 

agents responsible for essential services were able to circulate.  In addition to the short period 

(38 days), many lives were saved and the number of infected agents was much lower than in 

the other scenarios. 
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Figure 7. Illustration of the spread of the virus in family environments. 

 

 

Table 7. Synthesis of the results. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Infection lasted 92 days 92 days 93 days 134 days 38 days 

Total infected 

agents 

33357 29991 31091 25705 366 

Total dead agent 571 523 504 380 6 

Infectious peak 25581 in 53 

days 

22754 in 54 

days 

21018 in 49 

days 

≈10000 in 

84 days 

316 in 26 

days 

ICU lack 53 days 54 days 51 days Did not 

occur 

Did not occur 

 

 

5  CONCLUSION 

This work studied the spread of the recent COVID-19 virus in the Copacabana 

neighborhood, Rio de Janeiro city using ABM to simulate the epidemic outbreak for 
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different scenarios and interventions.  The higher risk of contamination in the favelas due 

to their situations where the number of ICU beds are not sufficient to attend all the people 

who need them. 

Even though the model is agent-based, the outcomes were similar to other studies that 

try to predict the number of people infected and dead in other works that use a pure 

mathematical approach to draw the predictions. The proposed ABM represented the 

phenomenology of the studied event and, although some hypotheses are disregarded, the 

model proved to be effective for the study on the spread of the virus. It is also important 

to emphasize that the ABM developed in this work can be easily used for other 

populations. 

The results of this study can be used by municipal managers where there are slums 

and community leaders in the involvement of actors responsible for crisis management 

and financing solutions, on the importance of social isolation measures, particularly for 

risk groups, as well as different impacts of measures that can be adopted at different stages 

of the epidemic.  The results should be used with care, considering the limitations of 

simulations and models that include assumptions that may not apply to all favelas, as well 

as may be impacted by variables not foreseen in the model, such as comorbidities and 

immune status of people, which greatly interfere in the outcome of COVID-19 cases The 

work can be extended based on new discoveries about the COVID-19.  At this moment 

there is still a scientific effort on getting knowledge about how the virus spreads and how 

is the development of the disease in different groups of people. The new knowledge can 

be incorporated to the model in the future to refine and improve it.  For validation 

purposes, future simulation runs can be performed to adjust the parameters to real data for 

the specific location used for this work. 
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